Ibuprofen Health Dictionary

Ibuprofen: From 3 Different Sources


A nonsteroidal anti-inflammatory drug (NSAID) used as a painkiller to treat conditions such as headache, menstrual pain, and injury to soft tissues (such as muscles and ligaments). The drug’s anti-inflammatory effect helps to reduce the joint pain and stiffness that occurs in types of arthritis. Side effects may include abdominal pain due to inflammation of the stomach lining, nausea, heartburn, and diarrhoea.
Health Source: BMA Medical Dictionary
Author: The British Medical Association
One of the NON-STEROIDAL ANTIINFLAMMATORY DRUGS (NSAIDS) with analgesic properties, Ibuprofen is used to treat rheumatoid arthritis and other forms of rheumatism as well as headaches and muscular pains. It can cause gastric irritation and bleeding in susceptible individuals if used regularly.
Health Source: Medical Dictionary
Author: Health Dictionary
n. an anti-inflammatory drug (see NSAID), used in the treatment of arthritic conditions and for pain relief (as in dysmenorrhoea and migraine). It sometimes causes skin rashes and digestive upsets.
Health Source: Oxford | Concise Colour Medical Dictionary
Author: Jonathan Law, Elizabeth Martin

Beer

(Ale)

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: None Saturated fat: None Cholesterol: None Carbohydrates: High Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Phosphorus

About the Nutrients in This Food Beer and ale are fermented beverages created by yeasts that convert the sugars in malted barley and grain to ethyl alcohol (a.k.a. “alcohol,” “drink- ing alcohol”).* The USDA /Health and Human Services Dietary Guidelines for Americans defines one drink as 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits. One 12-ounce glass of beer has 140 calo- ries, 86 of them (61 percent) from alcohol. But the beverage—sometimes nicknamed “liquid bread”—is more than empty calories. Like wine, beer retains small amounts of some nutrients present in the food from which it was made. * Because yeasts cannot digest t he starches in grains, t he grains to be used in mak ing beer and ale are allowed to germinate ( “malt” ). When it is t ime to make t he beer or ale, t he malted grain is soaked in water, forming a mash in which t he starches are split into simple sugars t hat can be digested (fermented) by t he yeasts. If undisturbed, t he fermentat ion will cont inue unt il all t he sugars have been digested, but it can be halted at any t ime simply by raising or lowering t he temperature of t he liquid. Beer sold in bott les or cans is pasteurized to k ill t he yeasts and stop t he fermentat ion. Draft beer is not pasteurized and must be refrigerated unt il tapped so t hat it will not cont inue to ferment in t he container. The longer t he shipping t ime, t he more likely it is t hat draft beer will be exposed to temperature variat ions t hat may affect its qualit y—which is why draft beer almost always tastes best when consumed near t he place where it was brewed. The Nutrients in Beer (12-ounce glass)

  Nutrients   Beer   %R DA
Calcium 17 mg 1.7
Magnesium 28.51 mg 7–9*
Phosphorus 41.1 mg 6
Potassium 85.7 mg (na)
Zinc 0.06 mg 0.5– 0.8*
Thiamin 0.02 mg 1.6 –1.8*
R iboflavin 0.09 mg 7– 8*
Niacin 1.55 mg 10
Vitamin B6 0.17 mg 13
Folate 20.57 mcg 5
  * t he first figure is t he %R DA for a man; t he second, for a woman Source: USDA Nut rient Database: w w w.nal.usda.gov/fnic/cgi-bin /nut _search.pl.

Diets That May Restrict or Exclude This Food Bland diet Gluten-free diet Low-purine (antigout) diet

Buying This Food Look for: A popular brand that sells steadily and will be fresh when you buy it. Avoid: Dusty or warm bottles and cans.

Storing This Food Store beer in a cool place. Beer tastes best when consumed within two months of the day it is made. Since you cannot be certain how long it took to ship the beer to the store or how long it has been sitting on the grocery shelves, buy only as much beer as you plan to use within a week or two. Protect bottled beer and open bottles or cans of beer from direct sunlight, which can change sulfur compounds in beer into isopentyl mercaptan, the smelly chemical that gives stale beer its characteristic unpleasant odor.

When You Are Ready to Serve This Food Serve beer only in absolutely clean glasses or mugs. Even the slightest bit of grease on the side of the glass will kill the foam immediately. Wash beer glasses with detergent, not soap, and let them drain dry rather than drying them with a towel that might carry grease from your hands to the glass. If you like a long-lasting head on your beer, serve the brew in tall, tapering glasses to let the foam spread out and stabilize. For full flavor, serve beer and ales cool but not ice-cold. Very low temperatures immo- bilize the molecules that give beer and ale their flavor and aroma.

What Happens When You Cook This Food When beer is heated (in a stew or as a basting liquid), the alcohol evaporates but the flavor- ing agents remain intact. Alcohol, an acid, reacts with metal ions from an aluminum or iron pot to form dark compounds that discolor the pot or the dish you are cooking in. To prevent this, prepare dishes made with beer in glass or enameled pots.

Medical Uses and/or Benefits Reduced risk of heart attack. Data from the American Cancer Society’s Cancer Prevention Study 1, a 12-year survey of more than 1 million Americans in 25 states, shows that men who take one drink a day have a 21 percent lower risk of heart attack and a 22 percent lower risk of stroke than men who do not drink at all. Women who have up to one drink a day also reduce their risk of heart attack. Numerous later studies have confirmed these findings. Lower risk of stroke. In January 1999, the results of a 677-person study published by researchers at New York Presbyterian Hospital-Columbia University showed that moder- ate alcohol consumption reduces the risk of stroke due to a blood clot in the brain among older people (average age: 70). How the alcohol prevents stroke is still unknown, but it is clear that moderate use of alcohol is a key. Heavy drinkers (those who consume more than seven drinks a day) have a higher risk of stroke. People who once drank heavily, but cut their consumption to moderate levels, can also reduce their risk of stroke. Numerous later studies have confirmed these findings. Lower cholesterol levels. Beverage alcohol decreases the body’s production and storage of low-density lipoproteins (LDLs), the protein and fat particles that carr y cholesterol into your arteries. As a result, people who drink moderately tend to have lower cholesterol levels and higher levels of high density lipoproteins (HDLs), the fat and protein particles that carr y cholesterol out of the body. The USDA /Health and Human Services Dietar y Guidelines for Americans defines moderation as two drinks a day for a man, one drink a day for a woman. Stimulating the appetite. Alcoholic beverages stimulate the production of saliva and the gastric acids that cause the stomach contractions we call hunger pangs. Moderate amounts of alcoholic beverages, which may help stimulate appetite, are often prescribed for geriatric patients, convalescents, and people who do not have ulcers or other chronic gastric problems that might be exacerbated by the alcohol. Dilation of blood vessels. Alcohol dilates the capillaries (the tiny blood vessels just under the skin), and moderate amounts of alcoholic beverages produce a pleasant flush that temporar- ily warms the drinker. But drinking is not an effective way to warm up in cold weather since the warm blood that flows up to the capillaries will cool down on the surface of your skin and make you even colder when it circulates back into the center of your body. Then an alco- hol flush will make you perspire, so that you lose more heat. Excessive amounts of beverage alcohol may depress the mechanism that regulates body temperature.

Adverse Effects Associated with This Food Increased risk of breast cancer. In 2008, scientists at the National Cancer Institute released data from a seven-year survey of more than 100,000 postmenopausal women showing that even moderate drinking (one to two drinks a day) may increase by 32 percent a woman’s risk of developing estrogen-receptor positive (ER+) and progesterone-receptor positive (PR+) breast cancer, tumors whose growth is stimulated by hormones. No such link was found between consuming alcohol and the risk of developing ER-/PR- tumors (not fueled by hor- mones). The finding applies to all types of alcohol: beer, wine, and spirits. Increased risk of oral cancer (cancer of the mouth and throat). Numerous studies confirm the American Cancer Society’s warning that men and women who consume more than two drinks a day are at higher risk of oral cancer than are nondrinkers or people who drink less. Note: The Dietary Guidelines for Americans describes one drink as 12 ounces of beer, five ounces of wine, or 1.5 ounces of distilled spirits. Increased risk of cancer of the colon and rectum. In the mid-1990s, studies at the University of Oklahoma suggested that men who drink more than five beers a day are at increased risk of rectal cancer. Later studies suggested that men and women who are heavy beer or spirits drinkers (but not those who are heavy wine drinkers) have a higher risk of colorectal cancers. Further studies are required to confirm these findings. Fetal alcohol syndrome. Fetal alcohol syndrome is a specific pattern of birth defects—low birth weight, heart defects, facial malformations, and mental retardation—first recognized in a study of babies born to alcoholic women who consumed more than six drinks a day while pregnant. Subsequent research has found a consistent pattern of milder defects in babies born to women who consume three to four drinks a day or five drinks on any one occasion while pregnant. To date, there is no evidence of a consistent pattern of birth defects in babies born to women who consume less than one drink a day while pregnant, but two studies at Columbia University have suggested that as few as two drinks a week while preg- nant may raise a woman’s risk of miscarriage. (“One drink” means 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits.) Alcoholism. Alcoholism is an addiction disease, the inability to control one’s alcohol consumption. It is a potentially life-threatening condition, with a higher risk of death by accident, suicide, malnutrition, or acute alcohol poisoning, a toxic reaction that kills by para- lyzing body organs, including the heart. Malnutrition. While moderate alcohol consumption stimulates appetite, alcohol abuse depresses it. In addition, an alcoholic may drink instead of eating. When an alcoholic does eat, excess alcohol in his/her body prevents absorption of nutrients and reduces the ability to synthesize new tissue. Hangover. Alcohol is absorbed from the stomach and small intestine and carried by the bloodstream to the liver, where it is oxidized to acetaldehyde by alcohol dehydrogenase (ADH), the enzyme our bodies use to metabolize the alcohol we produce when we digest carbohydrates. The acetaldehyde is converted to acetyl coenzyme A and either eliminated from the body or used in the synthesis of cholesterol, fatty acids, and body tissues. Although individuals vary widely in their capacity to metabolize alcohol, on average, normal healthy adults can metabolize the alcohol in one quart of beer in approximately five to six hours. If they drink more than that, they will have more alcohol than the body’s natural supply of ADH can handle. The unmetabolized alcohol will pile up in the bloodstream, interfering with the liver’s metabolic functions. Since alcohol decreases the reabsorption of water from the kidneys and may inhibit the secretion of an antidiuretic hormone, they will begin to urinate copiously, losing magnesium, calcium, and zinc but retaining more irritating uric acid. The level of lactic acid in the body will increase, making them feel tired and out of sorts; their acid-base balance will be out of kilter; the blood vessels in their heads will swell and throb; and their stomachs, with linings irritated by the alcohol, will ache. The ultimate result is a “hangover” whose symptoms will disappear only when enough time has passed to allow their bodies to marshal the ADH needed to metabolize the extra alcohol in their blood. Changes in body temperature. Alcohol dilates capillaries, tiny blood vessels just under the skin, producing a “flush” that temporarily warms the drinker. But drinking is not an effective way to stay warm in cold weather. Warm blood flowing up from the body core to the surface capillaries is quickly chilled, making you even colder when it circulates back into your organs. In addition, an alcohol flush triggers perspiration, further cooling your skin. Finally, very large amounts of alcohol may actually depress the mechanism that regulates body temperature. Impotence. Excessive drinking decreases libido (sexual desire) and interferes with the ability to achieve or sustain an erection. “Beer belly.” Data from a 1995, 12,000 person study at the University of North Carolina in Chapel Hill show that people who consume at least six beers a week have more rounded abdomens than people who do not drink beer. The question left to be answered is which came first: the tummy or the drinking.

Food/Drug Interactions Acetaminophen (Tylenol, etc.). The FDA recommends that people who regularly have three or more drinks a day consult a doctor before using acetaminophen. The alcohol/acetamino- phen combination may cause liver failure. Disulfiram (Antabuse). Taken with alcohol, disulfiram causes flushing, nausea, low blood pressure, faintness, respiratory problems, and confusion. The severity of the reaction gener- ally depends on how much alcohol you drink, how much disulfiram is in your body, and how long ago you took it. Disulfiram is used to help recovering alcoholics avoid alcohol. (If taken with alcohol, metronidazole [Flagyl], procarbazine [Matulane], quinacrine [Atabrine], chlorpropamide (Diabinase), and some species of mushrooms may produce a mild disulfi- ramlike reaction.) Anticoagulants. Alcohol slows the body’s metabolism of anticoagulants (blood thinners) such as warfarin (Coumadin), intensif ying the effect of the drugs and increasing the risk of side effects such as spontaneous nosebleeds. Antidepressants. Alcohol may increase the sedative effects of antidepressants. Drinking alcohol while you are taking a monoamine oxidase (M AO) inhibitor is especially hazard- ous. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Ordinarily, fermentation of beer and ale does not produce tyramine, but some patients have reported tyramine reactions after drinking some imported beers. Beer and ale are usually prohibited to those using M AO inhibitors. Aspirin, ibuprofen, ketoprofen, naproxen, and nonsteroidal anti-inflammatory drugs. Like alcohol, these analgesics irritate the lining of the stomach and may cause gastric bleeding. Combining the two intensifies the effect. Insulin and oral hypoglycemics. Alcohol lowers blood sugar and interferes with the metabo- lism of oral antidiabetics; the combination may cause severe hypoglycemia. Sedatives and other central nervous system depressants (tranquilizers, sleeping pills, antidepres- sants, sinus and cold remedies, analgesics, and medication for motion sickness). Alcohol inten- sifies sedation and, depending on the dose, may cause drowsiness, respiratory depression, coma, or death.... beer

Cherries

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin A (sour cherries), vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Cherries have moderate amounts of fiber, insoluble cellulose and lignin in the skin and soluble pectins in the flesh, plus vitamin C. One cup fresh red sweet cherries (two ounces, without pits) has 3.2 g dietary fiber, 64 IU vitamin A (.2 percent of the R DA) and 10.8 mg vitamin C (14 percent of the R DA for a woman, 12 percent of the R DA for a man). One-half cup canned water-packed sour/tart cherries has 0.5 g dietary fiber and 1.5 mg vitamin C, and 377 IU vitamin A (16 percent of the R DA for a woman, 13 percent of the R DA for a man). Like apple seeds and apricot, peach, or plum pits, cherry pits contain amygdalin, a naturally occurring cyanide/sugar compound that breaks down into hydrogen cyanide in the stomach. While accidentally swallow- ing a cherry pit once in a while is not a serious hazard, cases of human poisoning after eating apple seeds have been reported (see apples). NOTE : Some wild cherries are poisonous.

The Most Nutritious Way to Serve This Food Sweet cherries can be eaten raw to protect their vitamin C; sour (“cook- ing”) cherries are more palatable when cooked. * Except for maraschino cherries, which are high in sodium.

Diets That May Restrict or Exclude This Food Low-sodium diet (maraschino cherries)

Buying This Food Look for: Plump, firm, brightly colored cherries with glossy skin whose color may range from pale golden yellow to deep red to almost black, depending on the variety. The stems should be green and fresh, bending easily and snapping back when released. Avoid: Sticky cherries (they’ve been damaged and are leaking), red cherries with very pale skin (they’re not fully ripe), and bruised cherries whose flesh will be discolored under the bruise.

Storing This Food Store cherries in the refrigerator to keep them cold and humid, conserving their nutrient and flavor. Cherries are highly perishable; use them as quickly as possible.

Preparing This Food Handle cherries with care. When you bruise, peel, or slice a cherry you tear its cell walls, releasing polyphenoloxidase—an enzyme that converts phenols in the cherry into brown compounds that darken the fruit. You can slow this reaction (but not stop it completely) by dipping raw sliced or peeled cherries into an acid solution (lemon juice and water or vinegar and water) or by mixing them with citrus fruits in a fruit salad. Polyphenoloxidase also works more slowly in the cold, but storing sliced or peeled cherries in the refrigerator is much less effective than bathing them in an acid solution.

What Happens When You Cook This Food Depending on the variety, cherries get their color from either red anthocyanin pigments or yellow to orange to red carotenoids. The anthocyanins dissolve in water, turn redder in acids and bluish in bases (alkalis). The carotenoids are not affected by heat and do not dissolve in water, which is why cherries do not lose vitamin A when you cook them. Vitamin C, how- ever, is vulnerable to heat.

How Other Kinds of Processing Affect This Food Canning and freezing. Canned and frozen cherries contain less vitamin C and vitamin A than fresh cherries. Sweetened canned or frozen cherries contain more sugar than fresh cherries. Candying. Candied cherries are much higher in calories and sugar than fresh cherries. Maraschino cherries contain about twice as many calories per serving as fresh cherries and are high in sodium.

Medical Uses and/or Benefits Anti-inflammatory effects. In a series of laboratory studies conducted from 1998 through 2001, researchers at the Bioactive Natural Products Laboratory in the Department of Horti- culture and National Food Safety and Toxicology Center at Michigan State University dis- covered that the anthocyanins (red pigments) in tart cherries effectively block the activity of two enzymes, COX-1 and COX-2, essential for the production of prostaglandins, which are natural chemicals involved in the inflammatory response (which includes redness, heat, swelling, and pain). In other words, the anthocyanins appeared to behave like aspirin and other traditional nonsteroidal anti-inflammatory drugs, such as ibuprofen and naproxen. In 2004, scientists at the USDA Human Nutrition Research Center in Davis, California, released data from a study showing that women who ate 45 bing (sweet) cherries at breakfast each morning had markedly lower blood levels of uric acid, a by-product of protein metabolism linked to pain and inflammation, during an acute episode of gout (a form of arthritis). The women in the study also had lower blood levels of C-reactive protein and nitric acid, two other chemicals linked to inflammation. These effects are yet to be proven in larger studies with a more diverse group of subjects.... cherries

Coffee

Nutritional Profile Energy value (calories per serving): Low Protein: Trace Fat: Trace Saturated fat: None Cholesterol: None Carbohydrates: Trace Fiber: Trace Sodium: Low Major vitamin contribution: None Major mineral contribution: None

About the Nutrients in This Food Coffee beans are roasted seeds from the fruit of the evergreen coffee tree. Like other nuts and seeds, they are high in proteins (11 percent), sucrose and other sugars (8 percent), oils (10 to 15 percent), assorted organic acids (6 percent), B vitamins, iron, and the central nervous system stimulant caffeine (1 to 2 percent). With the exceptions of caffeine, none of these nutrients is found in coffee. Like spinach, rhubarb, and tea, coffee contains oxalic acid (which binds calcium ions into insoluble compounds your body cannot absorb), but this is of no nutritional consequence as long as your diet contains adequate amounts of calcium-rich foods. Coffee’s best known constituent is the methylxanthine central ner- vous system stimulant caffeine. How much caffeine you get in a cup of coffee depends on how the coffee was processed and brewed. Caffeine is Caffeine Content/Coffee Servings Brewed coffee 60 mg/five-ounce cup Brewed/decaffeinated 5 mg/five-ounce cup Espresso  64 mg/one-ounce serving Instant  47 mg/rounded teaspoon

The Most Nutritious Way to Serve This Food In moderation, with high-calcium foods. Like spinach, rhubarb, and tea, coffee has oxalic acid, which binds calcium into insoluble compounds. This will have no important effect as long as you keep your consumption moderate (two to four cups of coffee a day) and your calcium consumption high.

Diets That May Restrict or Exclude This Food Bland diet Gout diet Diet for people with heart disease (regular coffee)

Buying This Food Look for: Ground coffee and coffee beans in tightly sealed, air- and moisture-proof containers. Avoid: Bulk coffees or coffee beans stored in open bins. When coffee is exposed to air, the volatile molecules that give it its distinctive flavor and richness escape, leaving the coffee flavorless and/or bitter.

Storing This Food Store unopened vacuum-packed cans of ground coffee or coffee beans in a cool, dark cabinet—where they will stay fresh for six months to a year. They will lose some flavor in storage, though, because it is impossible to can coffee without trapping some flavor- destroying air inside the can. Once the can or paper sack has been opened, the coffee or beans should be sealed as tight as possible and stored in the refrigerator. Tightly wrapped, refrigerated ground coffee will hold its freshness and flavor for about a week, whole beans for about three weeks. For longer storage, freeze the coffee or beans in an air- and moistureproof container. ( You can brew coffee directly from frozen ground coffee and you can grind frozen beans without thawing them.)

Preparing This Food If you make your coffee with tap water, let the water run for a while to add oxygen. Soft water makes “cleaner”-tasting coffee than mineral-rich hard water. Coffee made with chlorinated water will taste better if you refrigerate the water overnight in a glass (not plastic) bottle so that the chlorine evaporates. Never make coffee with hot tap water or water that has been boiled. Both lack oxygen, which means that your coffee will taste flat. Always brew coffee in a scrupulously clean pot. Each time you make coffee, oils are left on the inside of the pot. If you don’t scrub them off, they will turn rancid and the next pot of coffee you brew will taste bitter. To clean a coffee pot, wash it with detergent, rinse it with water in which you have dissolved a few teaspoons of baking soda, then rinse one more time with boiling water.

What Happens When You Cook This Food In making coffee, your aim is to extract flavorful solids (including coffee oils and sucrose and other sugars) from the ground beans without pulling bitter, astringent tannins along with them. How long you brew the coffee determines how much solid material you extract and how the coffee tastes. The longer the brewing time, the greater the amount of solids extracted. If you brew the coffee long enough to extract more than 30 percent of its solids, you will get bitter compounds along with the flavorful ones. (These will also develop by let- ting coffee sit for a long time after brewing it.) Ordinarily, drip coffee tastes less bitter than percolator coffee because the water in a drip coffeemaker goes through the coffee only once, while the water in the percolator pot is circulated through the coffee several times. To make strong but not bitter coffee, increase the amount of coffee—not the brewing time.

How Other Kinds of Processing Affect This Food Drying. Soluble coffees (freeze-dried, instant) are made by dehydrating concentrated brewed coffee. These coffees are often lower in caffeine than regular ground coffees because caffeine, which dissolves in water, is lost when the coffee is dehydrated. Decaffeinating. Decaffeinated coffee is made with beans from which the caffeine has been extracted, either with an organic solvent (methylene chloride) or with water. How the coffee is decaffeinated has no effect on its taste, but many people prefer water-processed decaf- feinated coffee because it is not a chemically treated food. (Methylene chloride is an animal carcinogen, but the amounts that remain in coffees decaffeinated with methylene chloride are so small that the FDA does not consider them hazardous. The carcinogenic organic sol- vent trichloroethylene [TCE], a chemical that causes liver cancer in laboratory animals, is no longer used to decaffeinate coffee.)

Medical Uses and/or Benefits As a stimulant and mood elevator. Caffeine is a stimulant. It increases alertness and concentra- tion, intensifies muscle responses, quickens heartbeat, and elevates mood. Its effects derive from the fact that its molecular structure is similar to that of adenosine, a natural chemical by-product of normal cell activity. Adenosine is a regular chemical that keeps nerve cell activ- ity within safe limits. When caffeine molecules hook up to sites in the brain when adenosine molecules normally dock, nerve cells continue to fire indiscriminately, producing the jangly feeling sometimes associated with drinking coffee, tea, and other caffeine products. As a rule, it takes five to six hours to metabolize and excrete caffeine from the body. During that time, its effects may vary widely from person to person. Some find its stimu- lation pleasant, even relaxing; others experience restlessness, nervousness, hyperactivity, insomnia, flushing, and upset stomach after as little as one cup a day. It is possible to develop a tolerance for caffeine, so people who drink coffee every day are likely to find it less imme- diately stimulating than those who drink it only once in a while. Changes in blood vessels. Caffeine’s effects on blood vessels depend on site: It dilates coronary and gastrointestinal vessels but constricts blood vessels in your head and may relieve headache, such as migraine, which symptoms include swollen cranial blood vessels. It may also increase pain-free exercise time in patients with angina. However, because it speeds up heartbeat, doc- tors often advise patients with heart disease to avoid caffeinated beverages entirely. As a diuretic. Caffeine is a mild diuretic sometimes included in over-the-counter remedies for premenstrual tension or menstrual discomfort.

Adverse Effects Associated with This Food Stimulation of acid secretion in the stomach. Both regular and decaffeinated coffees increase the secretion of stomach acid, which suggests that the culprit is the oil in coffee, not its caffeine. Elevated blood levels of cholesterol and homocysteine. In the mid-1990s, several studies in the Netherlands and Norway suggested that drinking even moderate amounts of coffee (five cups a day or less) might raise blood levels of cholesterol and homocysteine (by-product of protein metabolism considered an independent risk factor for heart disease), thus increas- ing the risk of cardiovascular disease. Follow-up studies, however, showed the risk limited to drinking unfiltered coffees such as coffee made in a coffee press, or boiled coffees such as Greek, Turkish, or espresso coffee. The unfiltered coffees contain problematic amounts of cafestol and kahweol, two members of a chemical family called diterpenes, which are believed to affect cholesterol and homocysteine levels. Diterpenes are removed by filtering coffee, as in a drip-brew pot. Possible increased risk of miscarriage. Two studies released in 2008 arrived at different conclusions regarding a link between coffee consumption and an increased risk of miscar- riage. The first, at Kaiser Permanente (California), found a higher risk of miscarriage among women consuming even two eight-ounce cups of coffee a day. The second, at Mt. Sinai School of Medicine (New York), found no such link. However, although the authors of the Kaiser Permanente study described it as a “prospective study” (a study in which the research- ers report results that occur after the study begins), in fact nearly two-thirds of the women who suffered a miscarriage miscarried before the study began, thus confusing the results. Increased risk of heartburn /acid reflux. The natural oils in both regular and decaffeinated coffees loosen the lower esophageal sphincter (LES), a muscular valve between the esopha- gus and the stomach. When food is swallowed, the valve opens to let food into the stomach, then closes tightly to keep acidic stomach contents from refluxing (flowing backwards) into the esophagus. If the LES does not close efficiently, the stomach contents reflux and cause heartburn, a burning sensation. Repeated reflux is a risk factor for esophageal cancer. Masking of sleep disorders. Sleep deprivation is a serious problem associated not only with automobile accidents but also with health conditions such as depression and high blood pres- sure. People who rely on the caffeine in a morning cup of coffee to compensate for lack of sleep may put themselves at risk for these disorders. Withdrawal symptoms. Caffeine is a drug for which you develop a tolerance; the more often you use it, the more likely you are to require a larger dose to produce the same effects and the more likely you are to experience withdrawal symptoms (headache, irritation) if you stop using it. The symptoms of coffee-withdrawal can be relieved immediately by drinking a cup of coffee.

Food/Drug Interactions Drugs that make it harder to metabolize caffeine. Some medical drugs slow the body’s metabolism of caffeine, thus increasing its stimulating effect. The list of such drugs includes cimetidine (Tagamet), disulfiram (Antabuse), estrogens, fluoroquinolone antibiotics (e.g., ciprofloxacin, enoxacin, norfloxacin), fluconazole (Diflucan), fluvoxamine (Luvox), mexi- letine (Mexitil), riluzole (R ilutek), terbinafine (Lamisil), and verapamil (Calan). If you are taking one of these medicines, check with your doctor regarding your consumption of caf- feinated beverages. Drugs whose adverse effects increase due to consumption of large amounts of caffeine. This list includes such drugs as metaproterenol (Alupent), clozapine (Clozaril), ephedrine, epinephrine, monoamine oxidase inhibitors, phenylpropanolamine, and theophylline. In addition, suddenly decreasing your caffeine intake may increase blood levels of lithium, a drug used to control mood swings. If you are taking one of these medicines, check with your doctor regarding your consumption of caffeinated beverages. Allopurinol. Coffee and other beverages containing methylxanthine stimulants (caffeine, theophylline, and theobromine) reduce the effectiveness of the antigout drug allopurinol, which is designed to inhibit xanthines. Analgesics. Caffeine strengthens over-the-counter painkillers (acetaminophen, aspirin, and other nonsteroidal anti-inflammatories [NSAIDS] such as ibuprofen and naproxen). But it also makes it more likely that NSAIDS will irritate your stomach lining. Antibiotics. Coffee increases stomach acidity, which reduces the rate at which ampicillin, erythromycin, griseofulvin, penicillin, and tetracyclines are absorbed when they are taken by mouth. (There is no effect when the drugs are administered by injection.) Antiulcer medication. Coffee increases stomach acidity and reduces the effectiveness of nor- mal doses of cimetidine and other antiulcer medication. False-positive test for pheochromocytoma. Pheochromocytoma, a tumor of the adrenal glands, secretes adrenalin, which is converted to VM A (vanillylmandelic acid) by the body and excreted in the urine. Until recently, the test for this tumor measured the levels of VM A in the patient’s urine and coffee, which contains VM A, was eliminated from patients’ diets lest it elevate the level of VM A in the urine, producing a false-positive test result. Today, more finely drawn tests make this unnecessary. Iron supplements. Caffeine binds with iron to form insoluble compounds your body cannot absorb. Ideally, iron supplements and coffee should be taken at least two hours apart. Birth control pills. Using oral contraceptives appears to double the time it takes to eliminate caffeine from the body. Instead of five to six hours, the stimulation of one cup of coffee may last as long as 12 hours. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. Caffeine is a substance similar to tyramine. If you consume excessive amounts of a caffeinated beverage such as coffee while you are taking an M AO inhibitor, the result may be a hypertensive crisis. Nonprescription drugs containing caffeine. The caffeine in coffee may add to the stimulant effects of the caffeine in over-the-counter cold remedies, diuretics, pain relievers, stimulants, and weight-control products containing caffeine. Some cold pills contain 30 mg caffeine, some pain relievers 130 mg, and some weight-control products as much as 280 mg caffeine. There are 110 –150 mg caffeine in a five-ounce cup of drip-brewed coffee. Sedatives. The caffeine in coffee may counteract the drowsiness caused by sedative drugs; this may be a boon to people who get sleepy when they take antihistamines. Coffee will not, however, “sober up” people who are experiencing the inebriating effects of alcoholic beverages. Theophylline. Caffeine relaxes the smooth muscle of the bronchi and may intensif y the effects (and/or increase the risk of side effects) of this antiasthmatic drug.... coffee

Distilled Spirits

(Brandy, gin, rum, tequila, whiskey, vodka)

Nutritional Profile Energy value (calories per serving): Moderate to high Protein: None Fat: None Saturated fat: None Cholesterol: None Carbohydrates: None (except for cordials which contain added sugar) Fiber: None Sodium: Low Major vitamin contribution: None Major mineral contribution: Phosphorus

About the Nutrients in This Food Spirits are the clear liquids produced by distilling the fermented sugars of grains, fruit, or vegetables. The yeasts that metabolize these sugars and convert them into alcohol stop growing when the concentration of alcohol rises above 12–15 percent. In the United States, the proof of an alcoholic beverage is defined as twice its alcohol content by volume: a beverage with 20 percent alcohol by volume is 40 proof. This is high enough for most wines, but not high enough for most whiskies, gins, vodkas, rums, brandies, and tequilas. To reach the concentra- tion of alcohol required in these beverages, the fermented sugars are heated and distilled. Ethyl alcohol (the alcohol in beer, wine, and spirits) boils at a lower temperature than water. When the fermented sugars are heated, the ethyl alcohol escapes from the distillation vat and condenses in tubes leading from the vat to a collection vessel. The clear liquid that collects in this vessel is called distilled spirits or, more technically, grain neutral spirits. Gins, whiskies, cordials, and many vodkas are made with spirits American whiskeys (which include bourbon, rye, and distilled from grains. blended whiskeys) and Canadian, Irish, and Scotch whiskies are all made from spirits aged in wood barrels. They get their flavor from the grains and their color from the barrels. (Some whiskies are also colored with caramel.) Vodka is made from spirits distilled and filtered to remove all flavor. By law, vodkas made in America must be made with spirits distilled from grains. Imported vodkas may be made with spirits distilled either from grains or potatoes and may contain additional flavoring agents such as citric acid or pepper. Aquavit, for example, is essentially vodka flavored with caraway seeds. Gin is a clear spirit flavored with an infusion of juniper berries and other herbs (botanicals). Cordials (also called liqueurs) and schnapps are flavored spirits; most are sweetened with added sugar. Some cordials contain cream. Rum is made with spirits distilled from sugar cane (molasses). Tequila is made with spirits distilled from the blue agave plant. Brandies are made with spirits distilled from fruit. (Arma- gnac and cognac are distilled from fermented grapes, calvados and applejack from fermented apples, kirsch from fermented cherries, slivovitz from fermented plums.) Unless they contain added sugar or cream, spirits have no nutrients other than alcohol. Unlike food, which has to be metabolized before your body can use it for energy, alcohol can be absorbed into the blood-stream directly from the gastrointestinal tract. Ethyl alcohol provides 7 calories per gram.

The Most Nutritious Way to Serve This Food The USDA /Health and Human Services Dietary Guidelines for Americans defines one drink as 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits, and “moderate drinking” as two drinks a day for a man, one drink a day for a woman.

Diets That May Restrict or Exclude This Food Bland diet Lactose-free diet (cream cordials made with cream or milk) Low-purine (antigout) diet

Buying This Food Look for: Tightly sealed bottles stored out of direct sunlight, whose energy might disrupt the structure of molecules in the beverage and alter its flavor. Choose spirits sold only by licensed dealers. Products sold in these stores are manufac- tured under the strict supervision of the federal government.

Storing This Food Store sealed or opened bottles of spirits in a cool, dark cabinet.

Preparing This Food All spirits except unflavored vodkas contain volatile molecules that give the beverage its characteristic taste and smell. Warming the liquid excites these molecules and intensifies the flavor and aroma, which is the reason we serve brandy in a round glass with a narrower top that captures the aromatic molecules as they rise toward the air when we warm the glass by holding it in our hands. Whiskies, too, though traditionally served with ice in America, will have a more intense flavor and aroma if served at room temperature.

What Happens When You Cook This Food The heat of cooking evaporates the alcohol in spirits but leaves the flavoring intact. Like other alcoholic beverages, spirits should be added to a recipe near the end of the cooking time to preserve the flavor while cooking away any alcohol bite. Alcohol is an acid. If you cook it in an aluminum or iron pot, it will combine with metal ions to form dark compounds that discolor the pot and the food you are cooking. Any recipe made with spirits should be prepared in an enameled, glass, or stainless-steel pot.

Medical Uses and/or Benefits Reduced risk of heart attack. Data from the American Cancer Society’s Cancer Prevention Study 1, a 12-year survey of more than 1 million Americans in 25 states, shows that men who take one drink a day have a 21 percent lower risk of heart attack and a 22 percent lower risk of stroke than men who do not drink at all. Women who have up to one drink a day also reduce their risk of heart attack. Numerous later studies have confirmed these findings. Lower cholesterol levels. Beverage alcohol decreases the body’s production and storage of low density lipoproteins (LDLs), the protein and fat particles that carry cholesterol into your arteries. As a result, people who drink moderately tend to have lower cholesterol levels and higher levels of high density lipoproteins (HDLs), the fat and protein particles that carry cholesterol out of the body. Numerous later studies have confirmed these findings. Lower risk of stroke. In January 1999, the results of a 677-person study published by researchers at New York Presbyterian Hospital-Columbia University showed that moderate alcohol consumption reduces the risk of stroke due to a blood clot in the brain among older people (average age: 70). How alcohol prevents stroke is still unknown, but it is clear that moderate use is a key. Heavy drinkers (those who consume more than seven drinks a day) have a higher risk of stroke. People who once drank heavily, but cut their consumption to moderate levels, reduce their risk of stroke. Stimulating the appetite. Alcoholic beverages stimulate the production of saliva and the gastric acids that cause the stomach contractions we call hunger pangs. Moderate amounts of alcoholic beverages, which may help stimulate appetite, are often prescribed for geriatric patients, convalescents, and people who do not have ulcers or other chronic gastric problems that might be exacerbated by the alcohol. Dilation of blood vessels. Alcoholic beverages dilate the tiny blood vessels just under the skin, bringing blood up to the surface. That’s why moderate amounts of alcoholic beverages (0.2–1 gram per kilogram of body weight, or two ounces of whiskey for a 150-pound adult) temporarily warm the drinker. But the warm blood that flows up to the surface of the skin will cool down there, making you even colder when it circulates back into the center of your body. Then an alcohol flush will make you perspire, so you lose more heat. Excessive amounts of beverage alcohol may depress the mechanism that regulates body temperature.

Adverse Effects Associated with This Food Alcoholism. Alcoholism is an addiction disease, the inability to control one’s alcohol consumption. It is a potentially life-threatening condition, with a higher risk of death by accident, suicide, malnutrition, or acute alcohol poisoning, a toxic reaction that kills by para- lyzing body organs, including the heart. Fetal alcohol syndrome. Fetal alcohol syndrome is a specific pattern of birth defects—low birth weight, heart defects, facial malformations, learning disabilities, and mental retarda- tion—first recognized in a study of babies born to alcoholic women who consumed more than six drinks a day while pregnant. Subsequent research has found a consistent pattern of milder defects in babies born to women who drink three to four drinks a day or five drinks on any one occasion while pregnant. To date there is no evidence of a consistent pattern of birth defects in babies born to women who consume less than one drink a day while preg- nant, but two studies at Columbia University have suggested that as few as two drinks a week while pregnant may raise a woman’s risk of miscarriage. (One drink is 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits.) Increased risk of breast cancer. In 2008, scientists at the National Cancer Institute released data from a seven-year survey of more than 100,000 postmenopausal women showing that even moderate drinking (one to two drinks a day) may increase by 32 percent a woman’s risk of developing estrogen-receptor positive (ER+) and progesterone-receptor positive (PR+) breast cancer, tumors whose growth is stimulated by hormones. No such link was found between consuming alcohol and the risk of developing ER-/PR- tumors (not fueled by hor- mones). The finding applies to all types of alcohol: beer, wine, and distilled spirits. Increased risk of oral cancer (cancer of the mouth and throat). Numerous studies confirm the A merican Cancer Societ y’s warn ing that men and women who consume more than t wo drinks a day are at higher risk of oral cancer than are nondrinkers or people who drink less. Increased risk of cancer of the colon and rectum. In the mid-1990s, studies at the University of Oklahoma suggested that men who drink more than five beers a day are at increased risk of rectal cancer. Later studies suggested that men and women who are heavy beer or spirits drinkers (but not those who are heavy wine drinkers) have a higher risk of colorectal cancers. Further studies are required to confirm these findings. Malnutrition. While moderate alcohol consumption stimulates appetite, alcohol abuses depresses it. In addition, an alcoholic may drink instead of eating. When an alcoholic does eat, excess alcohol in his/her body prevents absorption of nutrients and reduces the ability to synthesize new tissue. Hangover. Alcohol is absorbed from the stomach and small intestine and carried by the bloodstream to the liver, where it is oxidized to acetaldehyde by alcohol dehydrogenase (ADH), the enzyme our bodies use every day to metabolize the alcohol we produce when we digest carbohydrates. The acetaldehyde is converted to acetyl coenzyme A and either eliminated from the body or used in the synthesis of cholesterol, fatty acids, and body tis- sues. Although individuals vary widely in their capacity to metabolize alcohol, an adult of average size can metabolize the alcohol in four ounces (120 ml) whiskey in approximately five to six hours. If he or she drinks more than that, the amount of alcohol in the body will exceed the available supply of ADH. The surplus, unmetabolized alcohol will pile up in the bloodstream, interfering with the liver’s metabolic functions. Since alcohol decreases the reabsorption of water from the kidneys and may inhibit the secretion of an antidiuretic hormone, the drinker will begin to urinate copiously, losing magnesium, calcium, and zinc but retaining uric acid, which is irritating. The level of lactic acid in the body will increase, making him or her feel tired and out of sorts; the acid-base balance will be out of kilter; the blood vessels in the head will swell and throb; and the stomach, its lining irritated by the alcohol, will ache. The ultimate result is a hangover whose symptoms will disappear only when enough time has passed to allow the body to marshal the ADH needed to metabolize the extra alcohol in the person’s blood. Changes in body temperature. Alcohol dilates capillaries, tiny blood vessels just under the skin, producing a “flush” that temporarily warms the drinker. But drinking is not an effective way to stay warm in cold weather. Warm blood flowing up from the body core to the surface capillaries is quickly chilled, making you even colder when it circulates back into your organs. In addition, an alcohol flush triggers perspiration, further cooling your skin. Finally, very large amounts of alcohol may actually depress the mechanism that regulates body temperature. Impotence. Excessive drinking decreases libido (sexual desire) and interferes with the ability to achieve or sustain an erection. Migraine headache. Some alcoholic beverages contain chemicals that inhibit PST, an enzyme that breaks down certain alcohols in spirits so that they can be eliminated from the body. If they are not broken down by PST, these alcohols will build up in the bloodstream and may trigger a migraine headache. Gin and vodka appear to be the distilled spirits least likely to trigger headaches, brandy the most likely.

Food/Drug Interactions Acetaminophen (Tylenol, etc.). FDA recommends that people who regularly have three or more drinks a day consult a doctor before using acetaminophen. The alcohol/acetaminophen combination may cause liver failure. Anti-alcohol abuse drugs (disulfiram [Antabuse]). Taken concurrently with alcohol, the anti- alcoholism drug disulfiram can cause flushing, nausea, a drop in blood pressure, breathing difficulty, and confusion. The severity of the symptoms, which may var y among individu- als, generally depends on the amount of alcohol consumed and the amount of disulfiram in the body. Anticoagulants. Alcohol slows the body’s metabolism of anticoagulants (blood thinners), intensif ying the effect of the drugs and increasing the risk of side effects such as spontane- ous nosebleeds. Antidepressants. Alcohol may strengthen the sedative effects of antidepressants. Aspirin, ibuprofen, ketoprofen, naproxen and nonsteroidal anti-inflammatory drugs. Like alco- hol, these analgesics irritate the lining of the stomach and may cause gastric bleeding. Com- bining the two intensifies the effect. Insulin and oral hypoglycemics. Alcohol lowers blood sugar and interferes with the metabo- lism of oral antidiabetics; the combination may cause severe hypoglycemia. Sedatives and other central nervous system depressants (tranquilizers, sleeping pills, antide- pressants, sinus and cold remedies, analgesics, and medication for motion sickness). Alcohol intensifies the sedative effects of these medications and, depending on the dose, may cause drowsiness, sedation, respiratory depression, coma, or death. MAO inhibitors. Monoamine oxidase (M AO) inhibitors are drugs used as antidepressants or antihypertensives. They inhibit the action of natural enzymes that break down tyramine, a substance formed naturally when proteins are metabolized. Tyramine is a pressor amine, a chemical that constricts blood vessel and raises blood pressure. If you eat a food that contains tyramine while you are taking an M AO inhibitor, the pressor amine cannot be eliminated from your body and the result may be a hypertensive crisis (sustained elevated blood pressure). Brandy, a distilled spirit made from wine (which is fermented) contains tyramine. All other distilled spirits may be excluded from your diet when you are taking an M AO inhibitor because the spirits and the drug, which are both sedatives, may be hazard- ous in combination.... distilled spirits

Grapefruit

(Ugli fruit)

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin A, vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Grapefruit and ugli fruit (a cross between the grapefruit and the tangerine) have moderate amounts of dietary fiber and, like all citrus fruits, are most prized for their vitamin C. Pink or red grapefruits have moderate amounts of vitamin A. One-half medium (four-inch diameter) pink grapefruit has 1.4 g dietary fiber, 1,187 IU vitamin A (51 percent of the R DA for a woman, 40 percent of the R DA for a man), and 44 mg vitamin C (59 percent of the R DA for a woman, 49 percent of the R DA for a man). One half medium (3.75-inch diameter) white grapefruit has 1.3 g dietary fiber, 39 IU vitamin A (2 percent of the R DA for a woman, 1 percent of the R DA for a man), and 39 mg vitamin C (52 percent of the R DA for a woman, 43 percent of the R DA for a man). Pink and red grapefruits also contain lycopene, a red carotenoid (plant pigment), a strong antioxidant that appears to lower the risk of cancer of the prostate. The richest source of lycopene is cooked tom atoes.

The Most Nutritious Way to Serve This Food Fresh fruit or fresh-squeezed juice.

Buying This Food Look for: Firm fruit that is heavy for its size, which means that it will be juicy. The skin should be thin, smooth, and fine-grained. Most grapefruit have yellow skin that, depending on the variety, may be tinged with red or green. In fact, a slight greenish tint may mean that the grapefruit is high in sugar. Ugli fruit, which looks like misshapen, splotched grapefruit, is yellow with green patches and bumpy skin. Avoid: Grapefruit or ugli fruit with puff y skin or those that feel light for their size; the flesh inside is probably dry and juiceless.

Storing This Food Store grapefruit either at room temperature (for a few days) or in the refrigerator. Refrigerate grapefruit juice in a tightly closed glass bottle with very little air space at the top. As you use up the juice, transfer it to a smaller bottle, again with very little air space at the top. The aim is to prevent the juice from coming into contact with oxygen, which destroys vitamin C. (Most plastic juice bottles are oxygen-permeable.) Properly stored and protected from oxygen, fresh grapefruit juice can hold its vitamin C for several weeks.

Preparing This Food Grapefruit are most flavorful at room temperature, which liberates the aromatic molecules that give them their characteristic scent and taste. Before cutting into the grapefruit, rinse it under cool running water to flush debris off the peel. To section grapefruit, cut a slice from the top, then cut off the peel in strips—starting at the top and going down—or peel it in a spiral fashion. You can remove the bitter white membrane, but some of the vitamin C will go with it. Finally, slice the sections apart. Or you can simply cut the grapefruit in half and scoop out the sections with a curved, serrated grapefruit knife.

What Happens When You Cook This Food Broiling a half grapefruit or poaching grapefruit sections reduces the fruit’s supply of vitamin C, which is heat-sensitive.

How Other Kinds of Processing Affect This Food Commercially prepared juices. How well a commercially prepared juice retains its vitamin C depends on how it is prepared, stored, and packaged. Commercial flash-freezing preserves as much as 95 percent of the vitamin C in fresh grapefruit juices. Canned juice stored in the refrigerator may lose only 2 percent of its vitamin C in three months. Prepared, pasteurized “fresh” juices lose vitamin C because they are sold in plastic bottles or waxed-paper cartons that let oxygen in. Commercially prepared juices are pasteurized to stop the natural enzyme action that would otherwise turn sugars to alcohols. Pasteurization also protects juices from potentially harmful bacterial and mold contamination. Following several deaths attributed to unpas- teurized apple juices containing E. coli O157:H7, the FDA ruled that all fruit and vegetable juices must carry a warning label telling you whether the juice has been pasteurized. Around the year 2000, all juices must be processed to remove or inactivate harmful bacteria.

Medical Uses and/or Benefits Antiscorbutic. All citrus fruits are superb sources of vitamin C, the vitamin that prevents or cures scurvy, the vitamin C-deficiency disease. Increased absorption of supplemental or dietary iron. If you eat foods rich in vitamin C along with iron supplements or foods rich in iron, the vitamin C will enhance your body’s ability to absorb the iron. Wound healing. Your body needs vitamin C in order to convert the amino acid proline into hydroxyproline, an essential ingredient in collagen, the protein needed to form skin, ten- dons, and bones. As a result people with scurvy do not heal quickly, a condition that can be remedied with vitamin C, which cures the scurvy and speeds healing. Whether taking extra vitamin C speeds healing in healthy people remains to be proved. Possible inhibition of virus that causes chronic hepatitis C infection. In Januar y 2008, research- ers at Massachusetts General Hospital Center for Engineering in Medicine (Boston) published a report in the medical journal Hepatology detailing the effect of naringenin, a compound in grapefruit, on the behavior of hepatitis viruses in liver cells. In laborator y studies, naringenin appeared to inhibit the ability of the virus to multiply and/or pass out from the liver cells. To date, there are no studies detailing the effect of naringenin in human beings with hepatitis C.

Adverse Effects Associated with This Food Contact dermatitis. The essential oils in the peel of citrus fruits may cause skin irritation in sensitive people.

Food/Drug Interactions Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen and others. Taking aspirin or NSAIDs with acidic foods such as grapefruit may intensif y the drug’s ability to irritate your stomach and cause gastric bleeding. Antihistamines, anticoagulants, benzodiazepines (tranquilizers or sleep medications), calcium channel blockers (blood pressure medication), cyclosporine (immunosuppressant drug used in organ transplants), theophylline (asthma drug). Drinking grapefruit juice with a wide variety of drugs ranging from antihistamines to blood pressure medication appears to reduce the amount of the drug your body metabolizes and eliminates. The “grapefruit effect” was first identified among people taking the antihypertensive drugs felodipine (Plendil) and nifedip- ine (Adalat, Procardia). It is not yet known for certain exactly what the active substance in the juice is. One possibility, however, is bergamottin, a naturally occurring chemical in grapefruit juice known to inactivate cytochrome P450 3A4, a digestive enzyme needed to convert many drugs to water-soluble substances you can flush out of your body. Without an effective supply of cytochrome P450 3A4, the amount of a drug circulating in your body may rise to dangerous levels. Reported side effects include lower blood pressure, increased heart rate, headache, flushing, and lightheadedness. Some Drugs Known to Interact with Grapefruit Juice* Drug Class  Generic (Brand name) Antianxiety drug  Diazepam ( Valium) Antiarrhythmics  Amiodarone (Cordarone) Blood-pressure drugs  Felodipine (Plendil), nicardipine (Cardene), nimodipine (Nimotop), nisoldipine (Sular), verapamil ( Verelan) Cholesterol-lowering drugs  Atorvastatin (Lipitor), lovastatin (Mevacor), simvastatin (Zocor), simvastatin/ezetimibe ( Vytorin) Immune Suppressants  Cyclosporine (Neoral), tacrolimus (Prograf ) Impotence Drug  Sildenafil ( Viagra) Pain Medication Methadone (Dolophine, Methadose) * This list may grow as new research appears.... grapefruit

Osteitis

Osteitis means in?ammation in the substance of a BONE. Traumatic osteitis is a condition particularly common in footballers, in which the victim complains of pain in the groin following exercise, particularly if this has involved much hip rotation. Examination reveals di?culty in spreading the legs and marked tenderness over the symphysis pubis. It responds well to rest and the administration of non-steroidal antiin?ammatory drugs (NSAIDS) such as ibuprofen or indomethacin.... osteitis

Brufen

n. see ibuprofen.... brufen

Over-the-counter Drug

(OTC drug) a drug that may be purchased directly from a pharmacist without a doctor’s prescription. Current government policy is to extend the range of OTC drugs: a number have already been derestricted (e.g. ibuprofen, ranitidine) and this trend is increasing, which will place an additional advisory responsibility on pharmacists.... over-the-counter drug

Joints, Diseases Of

‘Rheumatism’ is the colloquial term for nonspeci?c musculoskeletal symptoms arising in the joints, ligaments, tendons and muscles. ‘Arthritis’ describes a pathological musculoskeletal disorder. Most common are sprains of ligaments, strains of tendons and muscles,

BURSITIS, TENDINITIS and non-speci?c back pain (see BACKACHE).

Osteoarthritis (OA) rarely starts before 40, but by the age of 80 affects 80 per cent of the population. There are structural and functional changes in the articular cartilage, as well as changes in the collagenous matrix of tendons and ligaments. OA is not purely ‘wear and tear’; various sub-groups have a genetic component. Early OA may be precipitated by localised alteration in anatomy, such as a fracture or infection of a joint. Reactive new bone growth typically occurs, causing sclerosis (hardening) beneath the joint, and osteophytes – outgrowths of bone – are characteristic at the margins of the joint. The most common sites are the ?rst metatarsal (great toe), spinal facet joints, the knee, the base of the thumb and the terminal ?nger joints (Heberden’s nodes).

OA has a slow but variable course, with periods of pain and low-grade in?ammation. Acute in?ammation, common in the knee, may result from release of pyrophosphate crystals, causing pseudo-gout.

Urate gout results from crystallisation of URIC ACID in joints, against a background of hyperuricaemia. This high concentration of uric acid in the blood may result from genetic and environmental factors, such as excess dietary purines, alcohol or diuretic drugs.

In?ammatory arthritis is less common than OA, but potentially much more serious. Several types exist, including: SPONDYLARTHRITIS This affects younger men, chie?y involving spinal and leg joints. This may lead to in?ammation and eventual ossi?cation of the enthesis – that is, where the ligaments and tendons are inserted into the bone around joints. This may be associated with disorders in other parts of the body: skin in?ammation (PSORIASIS), bowel and genito-urinary in?ammation, sometimes resulting in infection of the organs (such as dysentery). The syndromes most clearly delineated are ankylosing spondylitis (see SPINE AND SPINAL CORD, DISEASES AND INJURIES OF), psoriatic or colitic spondylitis, and REITER’S SYNDROME. The diagnosis is made clinically and radiologically; no association has been found with autoantibodies (see AUTOANTIBODY). A particularly clear gene locus, HLA B27, has been identi?ed in ankylosing spondylitis. Psoriasis can be associated with a characteristic peripheral arthritis.

Systemic autoimmune rheumatic diseases (see AUTOIMMUNE DISORDERS). RHEUMATOID ARTHRITIS (RA) – see also main entry. The most common of these diseases. Acute in?ammation causes lymphoid synovitis, leading to erosion of the cartilage, associated joints and soft tissues. Fibrosis follows, causing deformity. Autoantibodies are common, particularly Rheumatoid Factor. A common complication of RA is Sjögren’s syndrome, when in?ammation of the mucosal glands may result in a dry mouth and eyes. SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) and various overlap syndromes occur, such as systemic sclerosis and dermatomyositis. Autoantibodies against nuclear proteins such as DNA lead to deposits of immune complexes and VASCULITIS in various tissues, such as kidney, brain, skin and lungs. This may lead to various symptoms, and sometimes even to organ failure.

Infective arthritis includes: SEPTIC ARTHRITIS An uncommon but potentially fatal disease if not diagnosed and treated early with approriate antibiotics. Common causes are TUBERCLE bacilli and staphylococci (see STAPHYLOCOCCUS). Particularly at risk are the elderly and the immunologically vulnerable, such as those under treatment for cancer, or on CORTICOSTEROIDS or IMMUNOSUPPRESSANT drugs. RHEUMATIC FEVER Now rare in western countries. Resulting from an immunological reaction to a streptococcal infection, it is characterised by migratory arthritis, rash and cardiac involvement.

Other infections which may be associated with arthritis include rubella (German measles), parvovirus and LYME DISEASE.

Treatment Septic arthritis is the only type that can be cured using antibiotics, while the principles of treatment for the others are similar: to reduce risk factors (such as hyperuricaemia); to suppress in?ammation; to improve function with physiotherapy; and, in the event of joint failure, to perform surgical arthroplasty. NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDS) include aspirin, paracetamol and many recently developed ones, such as the proprionic acid derivatives IBUPROFEN and naproxen, along with other drugs that have similar properties such as PIROXICAM. They all carry a risk of toxicity, such as renal dysfunction, or gastrointestinal irritation with haemorrhage. Stronger suppression of in?ammation requires corticosteroids and CYTOTOXIC drugs such as azathioprine or cyclophosphamide. Recent research promises more speci?c and less toxic anti-in?ammatory drugs, such as the monoclonal antibodies like in?iximab. An important treatment for some osteoarthritic joints is surgical replacement of the joints.... joints, diseases of

Non-steroidal Anti-inflammatory Drugs (nsaids)

These act by inhibiting the formation of PROSTAGLANDINS which are mediators of INFLAMMATION. They act both as ANALGESICS to relieve pain, and as inhibitors of in?ammation. Aspirin is a classic example of such a compound. Newer compounds have been synthesised with the aim of producing fewer and less severe side-effects. They are sometimes preferred to aspirin for the treatment of conditions such as RHEUMATOID ARTHRITIS, OSTEOARTHRITIS, sprains, strains and sports injuries. Their main side-effects are gastrointestinal: gastric ulcers and gastric haemorrhage may result (see STOMACH, DISEASES OF). This is because prostaglandins are necessary for the production of the mucous protective coat in the stomach and, when the production of prostaglandin is inhibited, the protection of the stomach is compromised. NSAIDs should therefore be used with caution in patients with DYSPEPSIA and gastric ulceration. The various nonsteroidal anti-in?ammatory drugs di?er little from each other in e?cacy, although there is considerable variation in patient response. Ibuprofen is one of the ?rst choices in this group of drugs as it combines good e?cacy with a low incidence of side-effects and administration is only required twice daily. Other drugs in this series include diclofenac, fenbufen, fenclofenac, fenoprofen, feprazone, ?urbiprofen, indomethacin, indoprofen, ketoprofen, ketorolac, naproxen, piroxicam, sulindac, tiaprofenic acid and tolmetin.... non-steroidal anti-inflammatory drugs (nsaids)

Pluchea Lanceolata

C. B. Clarke.

Family: Compositae; Asteraceae.

Habitat: Punjab, Upper Gangetic plains, Gujarat, Rajasthan.

Ayurvedic: Raasnaa, Rasanaa, Raas- nikaa, Rasaa, Yuktaa, Yuktrasaa, Suvahaa, Elaaparni.

Folk: Vaaya-surai (Uttar Pradesh), Raayasan.

Action: Aerial parts—smooth muscle relaxant. Stem—antiinflammatory. Pluchea lanceolata is the source of Raasnaa in Punjab, Uttar Pradesh and Gujarat. Vanda roxburghii is used as Raasnaa in Bengal. Throughout South India, Alpinia galanga is accepted as Raasnaa.

The stem and leaves contain morete- nol, moretenol acetate, neolupenol, oc- tacosanoic, hexacosanoic and tetra- cosanoic acid, tetracosanol, hexaco- sanol, triacontanol, stigmasterol and beta-sitosterol-D-glucoside.

The petroleum extract of the stem and leaves and the chloroform-soluble portion of the methanolic extract exhibited 31.9% and 54.5% antioedema activity, respectively. The triterpenes, moretenol acetate, moretenol and ne- olupenol exhibited 55.2,32,8 and 39.7% anti-inflammatory activity respectively as against ibuprofen as standard exhibiting 65.5% activity.... pluchea lanceolata

Tamarindo

Tamarind (Tamarindus indica).

Plant Part Used: Fruit pulp, leaf, root, branch.

Dominican Medicinal Uses: Fruit pulp: aqueous extract, orally, for insomnia, hormonal imbalance, hot flashes and nightsweats. Leaf, bark, branch: decoction, orally, liver, kidney and prostate disorders and hepatitis.

Safety: Fruit pulp: widely consumed and generally considered safe; fruit or seed pods may contain an irritating, hypoglycemic alkaloid. Bark/leaves: insufficient information available.

Drug Interactions: Ibuprofen (fruit extract increases bioavailability).

Laboratory & Preclinical Data: In vivo: antidiabetic (seed extract), anti-inflammatory (plant extracts), colonic cell proliferation effects (fruit pulp).

In vitro: antioxidant (plant extract).

* See entry for Tamarindo in “Part 3: Dominican Medicinal Plant Profiles” of this book for more information, including references.... tamarindo

Nsaid

(nonsteroidal anti-inflammatory drug) any one of a large group of drugs used for pain relief, particularly in rheumatic disease associated with inflammation but also in dysmenorrhoea and metastatic bone disease. NSAIDs act by inhibiting the cyclo-oxygenase enzymes (COX-1 and COX-2) responsible for controlling the formation of *prostaglandins, which are important mediators of inflammation. They include *aspirin, *ibuprofen, *ketoprofen, and *naproxen. Adverse effects include gastrointestinal bleeding and ulceration. Some NSAIDs act by selectively inhibiting COX-2 and are therefore less likely to cause gastric side-effects (see COX-2 inhibitor).... nsaid



Recent Searches