Corolla Health Dictionary

Corolla: From 1 Different Sources


Cinchona

Cinchona spp.

Rubiaceae

San: Cinchona, Kunayanah

Hin: Kunain Mal: Cinchona, Quoina

Tam: Cinchona

Importance: Cinchona, known as Quinine, Peruvian or Crown bark tree is famous for the antimalarial drug ‘quinine’ obtained from the bark of the plant. The term cinchona is believed to be derived from the countess of cinchon who was cured of malaria by treating with the bark of the plant in 1638. Cinchona bark has been valued as a febrifuge by the Indians of south and central America for a long time. Over 35 alkaloids have been isolated from the plant; the most important among them being quinine, quinidine, cinchonine and cinchonidine. These alkaloids exist mainly as salts of quinic, quinovic and cinchotannic acids. The cultivated bark contains 7-10% total alkaloids of which about 70% is quinine. Similarly 60% of the total alkaloids of root bark is quinine. Quinine is isolated from the total alkaloids of the bark as quinine sulphate. Commercial preparations contain cinchonidine and dihydroquinine. They are useful for the treatment of malarial fever, pneumonia, influenza, cold, whooping couphs, septicaemia, typhoid, amoebic dysentery, pin worms, lumbago, sciatica, intercostal neuralgia, bronchial neuritis and internal hemorrhoids. They are also used as anesthetic and contraceptive. Besides, they are used in insecticide compositions for the preservation of fur, feathers, wool, felts and textiles. Over doses of these alkaloids may lead to deafness, blindness, weakness, paralysis and finally collapse, either comatose or deleterious. Quinidine sulphate is cardiac depressant and is used for curing arterial fibrillation.

Distribution: Cinchona is native to tropical South America. It is grown in Bolivia, Peru, Costa Rica, Ecuador, Columbia, Indonesia, Tanzania, Kenya, Zaire and Sri Lanka. It was introduced in 1808 in Guatemala,1860 in India, 1918 in Uganda, 1927 in Philippines and in 1942 in Costa Rica. Roy Markham introduced the plant to India. The first plantation was raised in Nilgiris and later on in Darjeeling of West Bengal. The value of the tree was learnt by Jessuit priests who introduced the bark to Europe. It first appeared in London pharmacopoeia in 1677 (Husain, 1993).

Botany: The quinine plant belongs to the family Rubiaceae and genus Cinchona which comprises over 40 species. Among these a dozen are medicinally important. The commonly cultivated species are C. calisaya Wedd., C. ledgeriana Moens, C. officinalis Linn., C. succirubra Pav. ex Kl., C. lancifolia and C. pubescens. Cinchona species have the chromosome number 2n=68. C. officinalis Linn. is most common in India. It is an evergreen tree reaching a height of 10-15m. Leaves are opposite, elliptical, ovate- lanceolate, entire and glabrous. Flowers are reddish-brown in short cymbiform, compound cymes, terminal and axillary; calyx tubular, 5-toothed, obconical, subtomentose, sub-campanulate, acute, triangular, dentate, hairy; corolla tube 5 lobed, densely silky with white depressed hairs, slightly pentagonal; stamens 5; style round, stigma submersed. Fruit is capsule ovoid-oblong; seeds elliptic, winged margin octraceous, crinulate-dentate (Biswas and Chopra, 1982).

Agrotechnology: The plant widely grows in tropical regions having an average minimum temperature of 14 C. Mountain slopes in the humid tropical areas with well distributed annual rainfall of 1500-1950mm are ideal for its cultivation. Well drained virgin and fertile forest soils with pH 4.5-6.5 are best suited for its growth. It does not tolerate waterlogging. Cinchona is propagated through seeds and vegetative means. Most of the commercial plantations are raised by seeds. Vegetative techniques such as grafting, budding and softwood cuttings are employed in countries like India, Sri Lanka, Java and Guatemala. Cinchona succirubra is commonly used as root stock in the case of grafting and budding. Hormonal treatment induces better rooting. Seedlings are first raised in nursery under shade. Raised seedbeds of convenient size are prepared, well decomposed compost or manure is applied , seeds are broadcasted uniformly at 2g/m2, covered with a thin layer of sand and irrigated. Seeds germinate in 10-20 days. Seedlings are transplanted into polythene bags after 3 months. These can be transplanted into the field after 1 year at 1-2m spacing. Trees are thinned after third year for extracting bark , leaving 50% of the trees at the end of the fifth year. The crop is damaged by a number of fungal diseases like damping of caused by Rhizoctoria solani, tip blight by Phytophthora parasatica, collar rot by Sclerotiun rolfsii, root rot by Phytophthora cinnamomi, Armillaria mellea and Pythium vexans. Field sanitation, seed treatment with organo mercurial fungicide, burning of infected plant parts and spraying 1% Bordeaux mixture are recommended for the control of the diseases (Crandall, 1954). Harvesting can be done in one or two phases. In one case, the complete tree is uprooted, after 8-10 years when the alkaloid yield is maximum. In another case, the tree is cut about 30cm from the ground for bark after 6-7 years so that fresh sprouts come up from the stem to yield a second crop which is harvested with the under ground roots after 6-7 years. Both the stem and root are cut into convenient pieces, bark is separated, dried in shade, graded, packed and traded. Bark yield is 9000-16000kg/ha (Husain, 1993).

Properties and activity: Over 35 alkaloids have been isolated from Cinchona bark, the most important among them are quinine, quinidine, cinchonine, cinchonidine, cinchophyllamine and idocinchophyllamine. There is considerable variation in alkaloid content ranging from 4% to 20%. However, 6-8% yield is obtained from commercial plantations. The non alkaloidal constituents present in the bark are bitter glycosides, -quinovin, cinchofulvic, cinchotannic and quinic acids, a bitter essential oil possessing the odour of the bark and a red coloring matter. The seed contains 6.13% fixed oil. Quinine and its derivatives are bitter, astringent, acrid, thermogenic, febrifuge, oxytocic, anodyne, anti-bacterial, anthelmintic, digestive, depurative, constipating, anti pyretic, cardiotonic, antiinflammatory, expectorant and calcifacient (Warrier et al, 1994; Bhakuni and Jain, 1995).... cinchona

Cucurbits

Cucurbitaceae

The family Cucurbitaceae includes a large group of plants which are medicinally valuable. The important genera belonging to the family are Trichosanthes, Lagenaria, Luffa, Benincasa, Momordica, Cucumis, Citrullus, Cucurbita, Bryonopsis and Corallocarpus. The medicinally valuable species of these genera are discussed below.

1. Trichosanthes dioica Roxb.

Eng: Wild Snake-gourd; San: Meki,Pargavi, Parvara, Patola;

Hin: Palval, Parvar

Ben: Potol;

Mal: Kattupatavalam, Patolam;

Tam: Kombuppudalai;

Tel: Kommupotta

Wild snake-gourd is a slender-stemmed, extensively climbing, more or less scabrous and woolly herb found throughout the plains of N. India, extending to Assam and W. Bengal. Tendrils are 2-4 fid. Leaves are 7.5x5cm in size, ovate-oblong, cordate, acute, sinuate- dentate, not lobed, rigid, rough on both surface and with a petiole of 2cm. Flowers are unisexual. Male flowers are not racemed but woolly outside. Calyx tube is 4.5cm long, narrow, teeth linear and erect. Anthers are free. Fruit is 5.9cm long, oblong or nearly spherical, acute, smooth and orange-red when ripe. Seeds are half-ellipsoid, compressed and corrugated on the margin (Kirtikar and Basu, 1988). The unripe fruit of this is generally used as a culinary vegetable and is considered very wholesome and specially suited for the convalescent. The tender shoots are given in decoction with sugar to assist digestion. The seeds are useful for disorders of the stomach. The leaf juice is rubbed over the chest in liver congestion and over the whole body in intermittent fevers (Nadkarni, 1998). The fruit is used as a remedy for spermatorrhoea. The fresh juice of the unripe fruit is often used as a cooling and laxative adjunct to some alterative medicines. In bilious fever, a decoction of patola leaves and coriander in equal parts is given. The fruit in combination with other drugs is prescribed in snakebite and scorpion sting (Kirtikar and Basu, 1988).

Fruits contain free amino acids and 5-hydroxy tryptamine. Fatty acids from seeds comprise elaeostearic, linoelic, oleic and saturated acids. The aerial part is hypoglycaemic. Leaf and root is febrifuge. Root is hydragogue, cathartic and tonic. Unripe leaf and fruit is laxative (Husain et al, 1992). The plant is alterative and tonic. Leaves are anthelmintic. Flower is tonic and aphrodisiac. The ripe fruit is sour to sweet, tonic, aphrodisiac, expectorant and removes blood impurities.

The other important species belonging to the genus Trichosanthes are as follows.

T. palmata Roxb. T. cordata Roxb. T. nervifolia Linn.

T. cucumerina Linn.

T. anguina Linn.

T. wallichiana Wight. syn. T. multiloba Clarke

2. Lagenaria vulgaris Ser. syn. Cucurbita Lagenaria Linn. ; Roxb.

Eng: Bottle gourd San: Alabu Hin: Lauki, Jangli-khaddu

Ben: Lau, Kodu

Mal: Katuchuram, Churakka

Tam: Soriai-kay

Tel: Surakkaya

Bottle gourd is a large softly pubescent climbing or trailing herb which is said to be indigenous in India, the Molucas and in Abyssinia. It has stout 5-angled stems with bifid tendrils. Leaves are ovate or orbiculate, cordate, dentate, 5-angular or 5-lobed, hairy on both surfaces. Flowers are large, white, solitary, unisexual or bisexual, the males long and females short peduncled. Ovary is oblong, softly pubescent with short style and many ovules. Fruits are large, usually bottle or dumb-bell-shaped, indehiscent and polymorphous. Seeds are many, white, horizontal, compressed, with a marginal groove and smooth. There are sweet fruited and bitter-fruited varieties (Kirtikar and Basu, 1988). The fruit contains a thick white pulp which, in the cultivated variety (kodu) is sweet and edible, while in the smaller wild variety (tamri) it is bitter and a powerful purgative. The seeds yield clear limpid oil which is cooling and is applied to relieve headache. The pulp of the cultivated forms is employed as and adjunct to purgatives and considered cool, diuretic and antibilious, useful in cough, and as an antidote to certain poisons. Externally it is applied as a poultice. The leaves are purgative and recommended to be taken in the form of decoction for jaundice (Nadkarni, 1998). In the case of sweet-fruited variety, the stem is laxative and sweet. The fruit is sweet oleagenous, cardiotonic, general tonic, aphrodisiac, laxative and cooling. In the case of bitter-fruited variety, the leaves are diuretic, antibilious; useful in leucorrhoea, vaginal and uterine complaints and earache. The fruit is bitter, hot, pungent, emetic, cooling, cardiotonic, antibilious; cures asthma, vata, bronchitis, inflammations ulcers and pains.

3. Luffa acutangula (Linn.) Roxb.

Eng: Ridged gourd; San: Dharmargavah, Svadukosataki;

Hin: Tori, Katitori;

Ben: Ghosha

Mal: Peechil, Peechinga;

Tam: Pikangai, Prikkangai;

Tel: Birakaya;

Kan: Kadupadagila

Ridged gourd or ribbed gourd is a large monoecious climber cultivated throughout India. It is with 5-angled glabrous stems and trifid tendrils. Leaves are orbicular-cordate, palmately 5-7 lobed, scabrous on both sides with prominent veins and veinlets. Flowers are yellow, males arranged in 12-20 flowered axillary racemes. Female flowers are solitary, arranged in the axils of the males. Ovary is strongly ribbed. Fruits are oblong-clavate with 10-sharp angles 15-30cm long, tapering towards the base. Seeds are black, ovoid-oblong, much compressed and not winged (Warrier et al, 1995). The leaves are used in haemorrhoids, leprosy, granular-conjunctivitis and ringworm. The seeds are useful in dermatopathy. The juice of the fresh leaves is dropped into the eyes of children in granular conjunctivitis, also to prevent the lids from adhering at night on account of excessive meihomian secretion (Nadkarni, 1998). Fruits are demulcent, diuretic, tonic, expectorant, laxative and nutritive. The seeds are bitter, emetic, cathartic, expectorant and purgative.

The other important species of the genus Luffa are:

L. aegyptiaca Mill.

L. acutangula var. amara Clarke

L. echinata Roxb.

4. Benincasa hispida (Thumb.) Cogn. syn. B. cerifera Savi.

Eng: Ash gourd, White gourd melon; San: Kusmandah;

Hin: Petha, Raksa;

Ben: Kumra

Mal: Kumpalam;

Tam: Pusanikkai;

Kan: Bile Kumbala;

Tel: Bodigummadi

Ash gourd or White gourd melon is a large trailing gourd climbing by means of tendrils which is widely cultivated in tropical Asia. Leaves are large and hispid beneath. Flowers are yellow, unisexual with male peduncle 7.5-10cm long and female peduncle shorter. Fruits are broadly cylindric, 30-45cm long, hairy throughout and ultimately covered with a waxy bloom. The fruits are useful in asthma, cough, diabetes, haemoptysis, hemorrhages from internal organs, epilepsy, fever and vitiated conditions of pitta. The seeds are useful in dry cough, fever, urethrorrhea, syphilis, hyperdipsia and vitiated conditions of pitta (Warrier et al,1993). It is a rejuvenative drug capable of improving intellect and physical strength. In Ayurveda, the fresh juice of the fruit is administered as a specific in haemoptysis and other haemorrhages from internal organs. The fruit is useful in insanity, epilepsy and other nervous diseases, burning sensation, diabetes, piles and dyspepsia. It is a good antidote for many kinds of vegetable, mercurial and alcoholic poisoning. It is also administered in cough, asthma or respiratory diseases, heart diseases and catarrah. Seeds are useful in expelling tapeworms and curing difficult urination and bladder stones. The important formulations using the drug are Kusmandarasayana, Himasagarataila, Dhatryadighrita, Vastyamantakaghrita, Mahaukusmandakaghrita, etc. (Sivarajan et al, 1994).

Fruits contain lupeol, -sitosterol, n-triacontanol, vitamin B, mannitol and amino acids. The fruit is alterative, laxative, diuretic, tonic, aphrodisiac and antiperiodic. Seed and oil from seed is anthelmintic (Husain et al, 1992).

5. Momordica charantia Linn.

Eng: Bitter gourd, Carilla fruit San: Karavellam

Hin: Karela, Kareli

Mal: Kaypa, Paval

Tam: Pavakkai, Paval, Pakar

Tel: Kakara

Bitter gourd or Carilla fruit is a branched climbing annual which is cultivated throughout India. It is a monoecious plant with angled and grooved stems and hairy or villous young parts. Tendrils are simple, slender and elongate. Leaves are simple, orbicular, cordate and deeply divided into 5-7 lobes. Flowers are unisexual, yellow and arranged on 5-10cm long peduncles. Fruits are 5-15cm long with 3-valved capsules, pendulous, fusiform, ribbed and beaked bearing numerous triangular tubercles. Seeds are many or few with shining sculptured surface. The roots are useful in coloptosis and ophthalmopathy. The leaves are useful in vitiated conditions of pita, helminthiasis, constipation, intermittent fever, burning sensation of the sole and nyctalopia. The fruits are useful in skin diseases, leprosy, ulcers, wounds, burning sensation, constipation, anorexia, flatulence, colic, helminthiasis, rheumatalgia, gout, diabetes, asthma, cough, dysmenorrhoea, impurity of breast milk, fever and debility. Seeds are useful in the treatment of ulcers, pharyngodynia, and obstructions of the liver and spleen. The leaves and fruits are used for external application in lumbago, ulceration and bone fractures and internally in leprosy, haemorrhoids and jaundice (Warrier et al, 1995). The drug improves digestion, calms down sexual urge, quells diseases due to pitta and kapha and cures anaemia, anorexia, leprosy, ulcers, jaundice, flatulence and piles. Fruit is useful in gout, rheumatism and complaints of liver and spleen (Nadkarni, 1954; Aiyer and Kolammal, 1966; Mooss, 1976; Kurup et al, 1979). Kaccoradi taila is an important preparation using the drug (Sivarajan et al, 1994).

The seeds give triterpene glycosides, named momordicosides A, B, C, D and E, which are glycosides of cucurbit-5-en-triol, tetraol or pentaol. Leaves and vines give tetracyclic triterpenes-momordicines I, II and III (bitter principles). Immature fruits give several non-bitter and 2 bitter cucurbitacin glycosides. Four of the non-bitter glycosides, momordicosides F1, F2, G and I and the bitter momordicosides; K and L have also been characterized. Fruits, seeds and tissue culture give a polypeptide which contained 17 types of amino acids and showed hypoglycaemic activity. Fruits also give 5-hydroxy tryptamine and a neutral compound charantin (a steroidal glucoside), diosgenin, cholesterol, lanosterol and -sitosterol. Leaf is emetic, purgative and antibilious. Fruit is stomachic, tonic, carminative, febrifuge, antirheumatic and hypoglycaemic. Root is astringent. Fruit and leaf is anti-leprotic. Fruit, leaf and root are abortifacient and anti-diabetic. Leaf and seed is anthelmintic. Seed oil possesses antifeeding and insecticidal properties. Unsaponifiable matter from seed oil exhibited pronounced inhibitory activity against gram negative bacteria. Seed and fruit are hypoglycaemic, cytotoxic and anti-feedant (Husain et al, 1992).

Other important species belonging to the genus Momordica are as follows.

M. dioica Roxb.

M. cochinchinensis Spreng.

M. tuberosa Cogn.

M. balsamina Linn.

6. Cucumis melo Linn. syn. C. melo Linn. var. cultis Kurz., C. pubescens

Willd., C. callosus (Rottl.) Cogn.

Eng: Sweet melon San,

Hin: Kharbuja

Ben: Kharmul

Mal: Mulam

Tam: Chukkari-kai, Thumatti-kai, Mulampazham

Tel: Kharbuja-doshavSweet melon is a creeping annual extensively cultivated throughout India, found wild in India, Baluchistan and tropical Africa. The stem is creeping, angular and scabrous. Leaves are orbicular-reniform in outline, 5-angled or lobed, scabrous on both surfaces and often with soft hairs. Lobes of leaves are not very deep nor acute and with 5cm long petiole. Female peduncle is 5cm. Fruit is spherical, ovoid, elongate or contorted, glabrous or somewhat hairy, not spinous nor tuberculate.

Cucumis melo includes two varieties, namely,

C. melo var. momordica syn. C. momordica Roxb.

C. melo var. utilissimus Duthie & Fuller. syn. C. utilissimus Roxb.

The fruit is eaten raw and cooked. Its pulp forms a nutritive, demulcent, diuretic and cooling drink. It is beneficial as a lotion in chronic and acute eczema as well as tan and freckles and internally in cases of dyspepsia. Pulp mixed with cumin seeds and sugar candy is a cool diet in hot season. Seeds yield sweet edible oil which is nutritive and diuretic, useful in painful discharge and suppression of urine. The whole fruit is useful in chronic eczema (Kirtikar & Basu, 1988).

Seeds contain fatty acids-myristic, palmitic, oleic, linoleic; asparagine, glutamine, citrulline, lysine, histidine, arginine, phenylalanine, valine, tyrosine, leucine, iso-leucine, methionine, proline, threonine, tryptophan and crystine. Seed is tonic, lachrymatory, diuretic and urease inhibitor. Fruit pulp is eczemic. Fruit is tonic, laxative, galactagogue, diuretic and diaphoretic. The rind is vulnerary (Husain et al, 1992).

7. Cucumic sativus Linn.

Eng: Cucumber, Common cucumber; San: Trapusah;

Hin,

Ben: Khira;

Mal: Vellari

Tam: Vellarikkai, Pippinkai;

Kan: Mullusavte;

Tel: Dosekaya

Cucumber is a climbing annual which is cultivated throughout India, found wild in the Himalayas from Kumaon to Sikkim. It is a hispidly hairy trailing or climbing annual. Leaves are simple, alternate, deeply cordate, 3-5 lobed with both surfaces hairy and denticulate margins. Flowers are yellow, males clustered, bearing cohering anthers, connective crusted or elevated above the cells. Females are solitary and thickly covered with very bulbous based hairs. Fruits are cylindrical pepo of varying sizes and forms. Seeds are cream or white with hard and smooth testa. The fruits are useful in vitiated conditions of pitta, hyperdipsia, burning sensation, thermoplegia, fever, insomnia, cephalgia, bronchitis, jaundice, haemorrhages, strangury and general debility. The seeds are useful in burning sensation, pitta, constipation, intermittent fevers, strangury, renal calculus, urodynia and general debility (Warrier et al, 1994). The leaves boiled and mixed with cumin seeds, roasted, powdered and administered in throat affections. Powdered and mixed with sugar, they are powerful diuretic (Nadkarni, 1998). The fruits and seeds are sweet, refrigerant, haemostatic, diuretic and tonic. Other important species belonging to the genus are:

C. trigonus Roxb. syn. C. pseudo-colocynthis

C. prophetarum Linn.

8. Citrullus colocynthis (Linn.) Schrader. syn. Cucumis colocynthis Linn.

Eng: Colocynth, Bitter apple; San: Visala, Mahendravaruni;

Hin: Badi indrayan, Makkal

Ben: Makhal;

Mal: Kattuvellari (Valutu), Valiya pekkummatti;

Tel: Etti-puchcha

Tam: Paitummatti, Petummatti;

Colocynth or Bitter apple is found, cultivated and wild, throughout India in warmer areas. It is an extensively trailing annual herb with bifid tendrils angular branching stems and wooly tender shoots. Leaves are deeply divided, lobes narrow thick, glabrous or somewhat hairy. Flowers are unisexual, yellow, both males and females solitary and with pale-yellow corolla. Fruit is a globose or oblong fleshy indehiscent berry, 5-7.5cm in diameter and variegated with green and white. Seeds are pale brown. The fruits are useful in tumours, ascites, leucoderma, ulcers, asthma, bronchitis, urethrorrhea, jaundice, dyspepsia, constipations, elephantiasis, tubercular glands of the neck and splenomegaly (Warrier et al, 1994). It is useful in abnormal presentations of the foetus and in atrophy of the foetus. In addition to the above properties, the root has a beneficial action in inflammation of the breasts, pain in the joints; externally it is used in ophthalmia and in uterine pains. The fruit and root, with or without is rubbed into a paste with water and applied to boils and pimples. In rheumatism, equal parts of the root and long pepper are given in pill. A paste of the root is applied to the enlarged abdomen of children (Kirtikar and Basu, 1988). The fruit is useful in ascites, biliousness, jaundice, cerebral congestion, colic, constipation dropsy, fever, worms and sciatica. Root is given in cases of abdominal enlargement, cough, asthma, inflammation of the breast, ulcers, urinary diseases and rheumatism. Oil from seeds is used for poisonous bites, bowel complaints, epilepsy and also for blackening the hair (Nadkarni, 1954; Dey, 1980). The important formulations using the root and fruit are Abhayarista, Mahatiktakam kasaya, Manasamitravatakam, Cavikasava, Madhuyastyadi taila, etc. (Sivarajan et al, 1994). The powder is often used as an insecticide. The extract should never be given without some aromatic to correct its griping tendency (Nadkarni, 1998).

Fruit contains a glycoside- colocynthin, its aglycone- -elaterin, citrulluin, citrullene and citrullic acid. Unripe fruit contains p-hydroxy benzyl methyl ester. Roots contain - elaterin and hentriacontane (Husain et al, 1992). Colocynth is, in moderate doses, drastic, hydrogogue, cathartic and diuretic. In large doses, it is emetic and gastro-intestinal irritant and in small doses, it is expectorant and alterative. Colocynthin is a cathartic and intensely bitter principle. It has a purgative action. All parts of the plant are very bitter. The fruit has been described as cathartic (Nadkarni, 1982).

9. Citrullus vulgaris Schrad. syn. C. lanatus (Thunb.) Mats. & Nakai.

Eng: Water melon; San: Tarambuja;

Hin: Tarbuj;

Ben: Tarbuz

Mal: Thannimathan;

Tam: Pitcha, Dharbusini

Watermelon is an extensively climbing annual which is largely cultivated throughout India and in all warm countries. It has thick angular branching stems. Tendrils are bifid, stout and pubescent. Leaves are long, deeply divided or moderately lobed, glabrous or somewhat hairy and hardly scabrous. Petiole is a little shorter than the limb and villous. Calyx-lobes are narrowly lanceolate, equalling the tube. Corolla is yellow within, greenish outside and villous. Lobes are ovate-oblong, obtuse and prominently 5-nerved. Fruit is sub-globose or ellipsoid, smooth, greenish or clouded, often with a glaucous waxy coating. Flesh is juicy, red or yellowish white. Seeds are usually margined. C. vulgaris var. fistulosus Duthie & Fuller. syn. C. fistulosus has its fruit about the size of small turnip, the seeds of which are used medicinally. The fruit is tasteless when unripe and sweet when ripe. The unripe fruit is used to cure jaundice. Ripe fruit cures kapha and vata and causes biliousness. It is good for sore eyes, scabies and itching. The seeds are tonic to the brain and used as a cooling medicine. An emulsion of the seeds is made into a poultice with the pounded leaves and applied hot in cases of intestinal inflammations (Kirtikar and Basu, 1988). Fruit juice is good in quenching thirst and it is used as an antiseptic in typhus fever with cumin and sugar. It is used as a cooling drink in strangury and affections of urinary organs such as gonorrhoea; in hepatic congestion and intestinal catarrh. The bitter watermelon of Sind is known as “Kirbut” and is used as a purgative.

Seeds yield a fixed oil and proteids; citrullin. Seeds are cooling, demulcent, diuretic, vermifuge and nutritive. Pulp is cooling and diuretic. Fruit-juice is cooling and refreshing (Nadkarni, 1982).

10. Curcurbita pepo Linn. syn. Pepo vulgaris et P. verrucosus Moench

Meth.

Eng: Pompion, Pumpkin, Vegetable Marrow; San: Karkaru, Kurkaru, Kushmandi

Hin,

Ben: Kadimah, Konda, Kumra, Safedkkadu;

Mal: Mathan, Matha

Tel: Budadegummadi, Pottigummadi

Pompion or Pumpkin is a climbing herb which is considered to be a native of America and cultivated in many parts of India. The stem and leaves are with a harsh prickly armature. Foliage is stiff, more or less rigid and erect. Leaves are with a broad triangular pointed outline and often with deep lobes. Corolla is mostly with erect or spreading (not drooping) pointed lobes, the tube narrowing towards the base. Peduncle is strongly 5-angled and little or much expanding near the fruit. The fruit is cooling and astringent to the bowels, increases appetite, cures leprosy, ‘kapha and vata’, thirst, fatigue and purifies the blood. The leaves are used to remove biliousness. Fruit is good for teeth, throat and eyes and allays thirst. Seeds cure sore chests, haemoptysis, bronchitis and fever. It is good for the kidney and brain. The leaves are used as an external application for burns. The seeds are considered anthelmintic. The seeds are largely used for flavouring certain preparations of Indian hemp, and the root for a nefarious purpose, viz., to make the preparation more potent. The seeds are taeniacide, diuretic and demulcent. The fruit is cooling, laxative and astringent. The leaves are digestible, haematinic and analgesic.

The other important species belonging to the genus Cucurbita is C. maxima Duchena, the seeds of which are a popular remedy for tape-worm and oil as a nervine tonic (Kirtikar & Basu, 1988).

11. Corallocarpus epigaeus Benth. ex Hook. f. syn. Bryonia epigaea Wight.

San: Katunahi;

Hin: Akasgaddah;

Mal: Kadamba, Kollankova

Tam: Akashagarudan, Gollankovai;

Tel: Murudonda, Nagadonda

Corallocarpus is a prostrate or climbing herb distributed in Punjab, Sind, Gujarat, Deccan, Karnataka and Sri Lanka. It is monoecious with large root which is turnip-shaped and slender stem which is grooved, zigzag and glabrous. Tendrils are simple, slender and glabrous. Leaves are sub-orbicular in outline, light green above and pale beneath, deeply cordate at the base, angled or more or less deeply 3-5 lobed. Petiole is long and glabrous. Male flowers are small and arranged at the tip of a straight stiff glabrous peduncle. Calyx is slightly hairy, long and rounded at the base. Corolla is long and greenish yellow. Female flowers are usually solitary with short, stout and glabrous peduncles. Fruit is stalked, long, ellipsoid or ovoid. Seeds are pyriform, turgid, brown and with a whitish corded margin. It is prescribed in later stages of dysentery and old veneral complaints. For external use in chronic rheumatism, it is made into a liniment with cumin seed, onion and castor oil. It is used in case of snakebite where it is administered internally and applied to the bitten part. The root is given in syphilitic rheumatism and later stages of dysentery. The plant is bitter, sweet, alexipharmic and emetic. The root is said to possess alterative and laxative properties (Kirtikar and Basu, 1988). Root contains a bitter principle like Breyonin (Chopra et al, 1980).

Agrotechnology: Cucurbits can be successfully grown during January-March and September- December. For the rainfed crop, sowing can also be started after the receipt of the first few showers.

Pits of 60cm diameter and 30-45cm depth are to be taken at the desired spacing. Well rotten FYM or vegetable mixture is to be mixed with topsoil in the pit and seeds are to be sown at 4-5/pit. Unhealthy plants are to be removed after 2 weeks and retained 2-3 plants/pit. FYM is to be applied at 20-25t/ha as basal dose along with half dose of N (35kg/ha) and full dose of P (25kg) and K (25kg). The remaining dose of N (35kg) can be applied in 2 equal split doses at fortnightly intervals. During the initial stages of growth, irrigation is to be given at an interval of 3-4 days and at alternate days during flowering and fruiting periods. For trailing cucumber, pumpkin and melon, dried twigs are to be spread on the ground. Bitter gourd, bottle gourd, snake gourd and ash gourd are to be trailed on Pandals. Weeding and raking of the soil are to be conducted at the time of fertilizer application. Earthing up may be done during rainy season. The most dreaded pest of cucurbits is fruit flies which can be controlled by using fruit traps, covering the fruits with polythene, cloth or paper bags, removal and destruction of affected fruits and lastly spraying with Carbaryl or Malathion 0. 2% suspension containing sugar or jaggery at 10g/l at fortnightly intervals after fruit set initiation. During rainy season, downy mildew and mosaic diseases are severe in cucurbits. The former can be checked by spraying Mancozeb 0.2%. The spread of mosaic can be checked by controlling the vectors using Dimethoate or Phosphamidon 0.05% and destruction of affected plants and collateral hosts. Harvesting to be done at least 10 days after insecticide or fungicide application (KAU,1996).... cucurbits

Curcuma

Curcuma spp.

Zingiberaceae

The genus Curcuma belonging to the family Zingiberaceae comprises of a number of species which are medicinally very important. Among them, the most important species are described below.

1. C. amada Roxb.

English: Mango ginger San: Amrardrakam, Karpuraharida Hin: Ama -haldi

Mal: Mangainchi

Tam: Mankayinci

Tel: Mamidi Allam

Mango ginger is cultivated in Gujarat and found wild in parts of West Bengal, U. P, Karnataka and Tamil Nadu. It is a rhizomatous aromatic herb with a leafy tuft and 60-90cm in height. Leaves are long, petiolate, oblong-lanceolate, tapering at both ends, glabrous and green on both sides. Flowers are white or pale yellow, arranged in spikes in the centre of tuft of the leaves. Lip is semi -elliptic, yellow, 3-lobbed with the mid lobe emarginate. The rhizomes are useful in vitiated conditions of pitta, anorexia, dyspepsia, flatulence, colic, bruises, wounds, chronic ulcers, skin diseases, pruritus, fever, constipations, strangury, hiccough, cough, bronchitis, sprains, gout, halitosis, otalgia and inflammations (Warrier et al, 1994). The fresh root possesses the smell of green mango and hence the name mango ginger. The rhizomes are used externally in the form of paste as an application for bruises and skin diseases generally combined with other medicines. Tubers rubbed with the leaf- juice of Caesalpinia bonduc is given for worms (Nadkarni, 1982).

The essential oil contains -pinene, -and -curcumene, camphor, cuminyl alcohol, myristic acid and turmerone. Car-3-ene and cis-ocimene contribute the characteristic mango odour of the rhizome. Rhizome is CNS active, hypothermic and it shows potentiation of amphetamine toxicity. Tuber is trypsin inhibitor and is effective against Vibrio cholerae (Husain et al, 1992). The rhizomes are bitter, sweet sour, aromatic, cooling, appetiser, carminative, digestive, stomachic, demulcent, vulnerary, febrifuge, alexertic, aphrodisiac, laxative, diurectic, expectorant, antiinflammatory and antipyretic (Warrier et al, 1994).

2. C. aromatica Salisb.

Eng: Wild turmeric; San: Aranyaharidra, Vanaharidra;

Hin: Ban-haridra, Jangli-haldi;

Ben: Ban Haland; Mal,

Tam: Kasturimanjal, Kattumanjal;

Tel: Adavi-pasupu;

Kan: Kadarasina

Wild turmeric or Cochin turmeric or Yellow zeodoary is found wild throughout India and cultivated in Bengal and Kerala. It is a perennial tuberous herb with annulate, aromatic yellow rhizome which is internally orange-red in colour. Leaves are elliptic or lanceolate- oblong, caudate-acuminate, 30-60cm long, petioles as long or even longer, bracts ovate, recurved, more or less tinged with red or pink. Flowers are pink, lip yellow, obovate, deflexed, sub-entire or obscurely three lobed. Fruits are dehiscent, globose, 3-valved capsules. Rhizomes are used in combination with astringents and aromatics for bruises, sprains, hiccough, bronchitis, cough, leucoderma and skin eruptions (Warrier et al, 1994). The rhizomes have an agreeable fragrant smell and yield a yellow colouring matter like turmeric, and the fresh root has a camphoraceous odour. The dried rhizome is used as a carminative and aromatic adjunctant to other medicines (Nadkarni, 1998).

Essential oil contains -and - -curcumene, d-camphene and p-methoxy cinnamic acid. The colouring matter is curcumin. Numerous sesquiterpenoids of germacrone and guaiane skeletons have been identified recently. Rhizome has effect on respiration. It is spasmolytic and shows antagonism of amphetamine hyperactivity. Rhizome is an anti-dote for snakebite and carminative (Husain et al, 1992).

3. C. longa Linn. syn. C. domestica Valeton.

Eng: Turmeric; San: Haridra, Varavarnini;

Hin: Haldi, halda;

Ben: Haldi;

Mal: Manjal, Pachamanjal, Varattumanjal;

Tam: Mancal;

Kan: Haldi, Arasina;

Tel: Pasapu

Turmeric is cultivated all over India, particularly in W. Bengal, T. N and Maharashtra. It is a perennial herb, 60-90cm in height, with a short stem and tufts of erect leaves. Rhizome is cylindric, ovoid, orange coloured and branched. Leaves are simple, very large, petiole as long as the blade, oblong-lanceolate, tapering to the base upto 45cm long. Flowers are pale yellow, arranged in spikes concealed by the sheathing petioles and flowering bracts are pale green (Warrier et al, 1994). Turmeric occupies an important position in the life of Indian people as it forms an integral part of the rituals, ceremonies and cuisine. Due to the strong antiseptic properties, turmeric has been used as a remedy for all kinds of poisonous affections, ulcers and wounds. It gives good complexion to the skin and so it is applied to face as a depilatory and facial tonic. The drug cures diseases due to morbid vata, pitta and kapha, diabetes, eye diseases, ulcers, oedema, anaemia, anorexia, leprosy and scrofula. It purifies blood by destroying the pathogenic organisms. A paste of turmeric alone, or combined with a paste of neem (Azadirachta indica) leaves, is used to cure ringworm, obstinate itching, eczema and other parasitic skin diseases and in chicken pox and small pox. The drug is also useful in cold, cough, bronchitis, conjunctivitis and liver affections (Nadkarni, 1954; Kurup et al,1979; Kolammal, 1979). The rhizome is the officinal part and is an important ingredient of formulations like Nalpamaradi taila, Jatyadi taila, Narayana gula, etc. (Sivarajan et al, 1994).

Turmeric paste mixed with a little limejuice and saltpetre and applied hot is a popular application to sprains and bruises. In smallpox and chickenpox, a coating of turmeric is applied to facilitate the process of scabbing. The smoke produced by sprinkling powdered turmeric over burnt charcoal will relieve scorpion sting when the part affected is exposed to the smoke for a few minutes. Turmeric and alum powder in the proportion of 1:20 is blown into the ear in chronic otorrhoea (Nadkarni, 1998). “Haridra Khand”, a compound containing powdered turmeric, sugar and many other ingredients is a well-known preparation for cold, cough and flu, and for skin diseases. In Unani system, roasted turmeric is an ingredient of “Hab Narkachur”, used as antidysenteric for children (Thakur et al, 1989).

Essential oil contains ar-turmerone, and ar-curcumene as ma jor constituents. Some of the other compounds are -and -pinene, sabinene, myrcene, -terpinene, limonene, p- cymene, perillyl alcohol, turmerone, eugenol, iso-eugenol, eugenol methyl ether and iso- eugenol methyl ether. Curcumin and related compounds have also been reported as major constituents of the rhizomes. Recently a number of sesquiterpenes have been reported from C. longa, viz., the sesquiterpenoids of germacrane, bisabolane and guainane skeletons (Husain et al, 1992). The study of sesquiterpenes has revealed a new compound curlone (Kisoy et al, 1983). The crystalline colouring matter curcumin (0. 6%) is diferuloyl methane (Mathews et al, 1980). Stigmasterol, cholestrol, -sitosterol and fatty acids, mainly straight chain dienoic acids are reported (Moon et al, 1977). Curcumin, the colouring agent and major constituent of C. longa, is said to possess local as well as systemic antiinflammatory property which has been found to compare favourably with phenylbutazone (Srimal and Dhawan, 1973). An extract of the crude drug ‘akon’ containing the rhizomes exhibited intensive preventive activity against carbon tetrachloride induced liver injury invivo and invitro. The liver protecting effects of some analogs of ferulic acid and p-coumaric acid, probable metabolites of the curcuminoids have been also evaluated (Kiso et al, 1983). Curcumin is antiinflammatory. Rhizome is antiprotozoal, spasmolytic, CNS active, antiparasitic, antispasmodic, antibacterial, antiarthritic, anthelmintic, carminative, antiperiodic, emo llient, anodyne, laxative, diruretic, expectorant, alterative, alexertive, febrifuge, opthalmic and tonic.

4. C. zedoaria (Berg.) Rosc. syn. C. zerumbet Roxb; Amomum zedoaria

Christm.vEng: Round zedoary; San: Kachura, Shati;

Hin: Kakhur;

Ben: Sati;

Kan: Kachora

Mal: Manjakoova, Adavi-kacholam;

Tam: Kichilikizhangu, Nirvisham;

Tel: Kacheramu

The round zedoary or Zerumbet is mostly found in India and S. E. Asia. The plant has 4-6 leaves with 20-60cm long lamina. The leaf lami na is oblong-lanceolate, finely acuminate and glabrous on both the surfaces. Flower stalk is 20-25cm long, emerging before the leaves. Flowers are yellow, while the flowering bract is green tinged with red. Calyx is 8mm long, corolla tube is twice as long as the calyx. Capsule is ovoid, trigonous, thin smooth and bursting irregularly. Tubers are palmately branched and camphoraceous (Thakur et al, 1989). The identity of the plant sources of the drug Karcura is a matter of debate. There is difference of opinion among men of Ayurveda, as to whether Sati and Karcura are the same drug or different. Many authors consider them different and equate Sati with Hedychium spicatum Smith. and Karcura with C. zedoaria, both belonging to Zingiberaceae (Kurup et al,1979; Chunekar 1982; Sharma, 1983). Some others treat them to be the same and equate it with C. zedoaria (Kirtikar and Basu, 1918; Vaidya, 1936; Nadkarni, 1954; Kapoor and Mitra, 1979). However, the source of Karcura in Kerala in the recent times has been Kaempferia galanga of the same family. The rhizome of C. zedoaria is used as appetiser and tonic, particularly prescribed to ladies after childbirth. In case of cold, a decoction of long pepper (Piper longum), cinnamon (Cinnamomum verum), zedoary and honey is given. In Ayurveda it is an ingredient of “Braticityadi kwatha”, used in high fever (Thakur et al, 1989). Root is useful in flatulence and dyspepsia, and as a corrector of purgatives. Fresh root checks leucorrhoeal and gonorrhoeal discharges. Root powder is a good substitute for many foreign foods for infants. For worms, the juice from the tubers is given to children. Juice of the leaves is given in dropsy (Nadkarni, 1982). It is an odoriferous ingredient of the cosmetics used for the cure of chronic skin diseases caused by impure or deranged blood (Nadkarni, 1998).

Essential oil from rhizomes contains -pinene, d-camphene, cineole, d-camphor, sesquiterpenes and sesquiterpene alcohols (Husain et al, 1992). The novel sesquiterpenoids which have been isolated and characterised are cuzerenone, epi-cuzerenone, iso- furanogermerene, curcumadiol, curcumol, curcumenol, iso-curcumenol, procurcumenol, dehydrocurdione (Hikino et al, 1968, 1971, 1972), germacrone-4, 5-epoxide, germacrone, germacrone furanodienone, curcumenol, iso-curcumenol, curcumanolides A and B and curcumenone (Shiobara et al, 1985). The starch left after the extraction is purified and sold as a commodity of cottage industry in West-Bengal under the name ‘Shoti’ (Rao et al, 1928). Ethyl-p methoxy-cinnamate has been isolated from the alcoholic extract of the plant (Gupta et al, 1976). Rhizome is stomachic, diuretic, and carminative and gastrointestinal stimulant.

Other important species of Curcuma genus are

C. angustifolia Roxb. (Vellakoova)

C. caesia Roxb. (Black ginger)

C. leucorhiza Roxb.

C. pseudomontana Grah.

C. rubescens Roxb.

Agrotechnology: Curcuma species are tropical herbs and can be grown on different types of soils both under irrigated and rainfed conditions. Rich loamy soils having good drainage are ideal for the crop. The plant is propagated by whole or split mother rhizomes. Well developed, healthy and disease free rhizomes are to be selected. Rhizomes are to be treated with copper oxychloride fungicides and stored in cool, dry place or earthen pits plastered with mud and cowdung. The best season of planting is during April with the receipt of pre-monsoon showers. The land is to be prepared to a fine tilth during February-March. On receipt of pre- monsoon showers in April, beds of size 3x1.2m with a spacing of 40cm between beds are to be prepared. Small pits are to be taken in the beds in rows with a spacing of 25-40cm.

Finger rhizomes are to be planted flat with buds facing upwards and covered with soil or dry powdered cattle ma nure. The crop is to be mulched immediately after planting and 50 days after first mulching. Cattle manure or compost is to be applied as basal dose at 20-40t/ha at the time of land preparation or by spreading over the beds after planting. Application of NPK fertilizers is beneficial and found to increase the yield considerably. Weeding is to be done twice at 60 and 120 days after planting, depending upon weed intensity. Earthing up is to be done after 60 days. No major incidence of pest or disease is noticed in this crop. Leaf blotch and leaf spot can be controlled by spraying Bordeaux mixture or 0.2% Mancozeb. Shoot borers can be controlled by spraying 0.05% Dimethoate or 0.025% Quinalphos. Time of harvest usually extends from January-March. Harvesting is generally done at about 7-10 months after planting depending upon the species and variety. Harvested rhizomes are to be cleaned of mud and other materials adhering to them. Good fingers separated are to be used for curing (KAU, 1996).... curcuma

Indian Bdellium

Commiphora mukul

Burseraceae

San: Gugulu, Mahisaksah, Koushikaha, Devadhupa

Hin: Gugal Mal:Gulgulu Tam,

Tel: Gukkulu

Kan: Guggul

Ben: Guggul

Importance: Indian bdellium is a small, armed, deciduous tree from the bark of which gets an aromatic gum resin, the ‘Guggul’ of commerce. It is a versatile indigenous drug claimed by ayurvedists to be highly effective in the treatment of rheumatism, obesity, neurological and urinary disorders, tonsillitis, arthritis and a few other diseases. The fumes from burning guggul are recommended in hay- fever, chronic bronchitis and phytises.

The price of guggulu gum has increased ten fold in ten years or so, indicating the increase in its use as well as decrease in natural plant stand. It has been listed as a threatened plant by Botanical Survey of India (Dalal, 1995) and is included in the Red Data Book (IUCN) and over exploited species in the country (Billare,1989).

Distribution: The center of origin of Commiphora spp. is believed to be Africa and Asia. It is a widely adapted plant well distributed in arid regions of Africa (Somalia, Kenya and Ethiopia in north east and Madagascar, Zimbabwe, Botswana, Zaire in south west Africa), Arabian peninsula (Yemen, Saudi Arabia and Oman). Different species of Commiphora are distributed in Rajasthan, Gujarat, Maharashtra and Karnataka states of India and Sind and Baluchistan provinces of Pakistan (Tajuddin et al, 1994). In India, the main commercial source of gum guggul is Rajasthan and Gujarat.

Botany: The genus Commiphora of family Burseraceae comprises about 185 species. Most of them occur in Africa, Saudi Arabia and adjoining countries. In India only four species have been reported. They are C. mukul(Hook. ex Stocks) Engl. syn. Balsamodendron mukul (Hook. ex Stocks), C. wightii (Arnott) Bhandari, C.stocksiana Engl., C. berryi and C.agallocha Engl.

In early studies about the flora of India, the ‘guggul’ plant was known as Commiphora mukul(Hook. ex Stocks) Engl. or Balsamodendron mukul (Hook. ex Stocks). It was renamed as C. roxburghii by Santapau in 1962. According to Bhandari the correct Latin name of the species is C. wightii(Arnott) Bhandari, since the specific name ‘wightii’ was published in 1839, prior to ‘roxburghi’ in 1848 (Dalal and Patel, 1995).

C. mukul is a small tree upto 3-4m height with spinescent branching. Stem is brownish or pale yellow with ash colored bark peeling off in flakes. Young parts are glandular and pubescent. Leaves are alternate, 1-3 foliate, obovate, leathery and serrate (sometimes only towards the apex). Lateral leaflets when present only less than half the size of the terminal ones. Flowers small, brownish red, with short pedicel seen in fascicles of 2-3. Calyx campanulate, glandular, hairy and 4-5 lobed. Corolla with brownish red, broadly linear petals reflexed at apex. Stamens 8-10, alternatively long and short. Ovary oblong, ovoid and stigma bifid. Fruit is a drupe and red when ripe, ovate in shape with 2-3 celled stones. The chromosome number 2n= 26 (Warrier et al, 1994; Tajuddin et al, 1994).

Agrotechnology: Guggal being a plant of arid zone thrives well in arid- subtropical to tropical climate.

The rainfall may average between 100mm and 500mm while air temperature may vary between 40 C in summer and 3 C during winter. Maximum relative humidity prevails during rainy season (83% in the morning and 48% in the evening).Wind velocity remains between 20-25 km/hour during the year is good. Though they prefer hard gypseous soil, they are found over sandy to silt loam soils, poor in organic matter but rich in several other minerals in arid tracks of western India (Tajuddin et al, 1994).

Plants are propagated both by vegetatively and seeds. Plants are best raised from stem cuttings from the semi woody (old) branch. For this purpose one metre long woody stem of 10mm thickness is selected and the cut end is treated with IBA or NAA and planted in a well manured nursery bed during June-July months; the beds should be given light irrigation periodically. The cuttings initiate sprouting in 10-15 days and grow into good green sprout in 10-12 months. These rooted plants are suitable for planting in the fields during the next rainy season. The cuttings give 80-94% sprouting usually. Air layering has also been successfully attempted and protocol for meristem culture is available in literature. Seed germination is very poor (5%) but seedling produce healthier plants which withstand high velocity winds.

The rooted cuttings are planted in a well laid-out fields during rainy season. Pits of size 0.5m cube are dug out at 3-4 m spacing in rows and given FYM and filler soil of the pit is treated with BHC (10%) or aldrin (5%) to protect the new plants from white ants damage. Fertilizer trials have shown little response except due to low level of N fertilization. Removal of side branches and low level of irrigation supports a good growth of these plants. The plantation does not require much weeding and hoeing. But the soil around the bushes be pulverised twice in a year to increase their growth and given urea or ammonium sulphate at 25- 50g per bush at a time and irrigated. Dalal et al (1989) reported that cercospora leaf spot was noticed on all the cultures. Bacterial leaf blight was also noticed to attack the cultures. A leaf eating caterpillar (Euproctis lanata Walker) attack guggal, though not seriously. White fly (Bemisia tabaci) is observed to suck sap of leaves and such leaves become yellowish and eventually drop. These can be effectively controlled by using suitable insecticide.

Stem or branch having maximum diameter of about 5cm at place of incision, irrespective of age is tapped. The necrotic patch on the bark is peeled off with a sharp knife and Bordeaux paste is applied to the exposed (peeled off) surface of the stem or branch. A prick chisel of about 3cm width is used to make bark- deep incisions and while incising the bark, the chisel is held at an acute angle so that scooped suspension present on the body of the chisel flows towards the blade of the chisel and a small quantity of suspension flows inside the incised bark. If tapping is successful, gum exudation ensures after about 15-20 days from the date of incision and continues for nearly 30-45 days. The exuded gum slides down the stem or branch, and eventually drops on the ground and gets soiled. A piece of polythene sheet can be pouched around the place of incision to collect gum. Alternatively, a polythene sheet can be spread on the ground to collect exuded gum. A maximum of about 500g of gum has been obtained from a plant (Dalal, 1995).

Post harvest technology: The best grade of guggul is collected from thick branches of tree. These lumps of guggul are translucent. Second grade guggul is usually mixed with bark, sand and is dull coloured guggul. Third grade guggul is usually collected from the ground which is mixed with sand, stones and other foreign matter. The final grading is done after getting cleansed material. Inferior grades are improved by sprinkling castor oil over the heaps of the guggul which impart it a shining appearance (Tajuddin et al, 1994).

Properties and activity: The gum resin contains guggul sterons Z and E, guggul sterols I-V, two diterpenoids- a terpene hydrocarbon named cembreneA and a diterpene alcohol- mukulol, -camphrone and cembrene, long chain aliphatic tetrols- octadecan-1,2,3,4-tetrol, eicosan-1,2,3,4-tetrol and nonadecan-1,2,3,4-tetrol. Major components from essential oil of gum resin are myrcene and dimyrcene. Plant without leaves, flowers and fruits contains myricyl alcohol, -sitosterol and fifteen aminoacids. Flowers contain quercetin and its glycosides as major flavonoid components, other constituents being ellagic acid and pelargonidin glucoside (Patil et al, 1972; Purushothaman and Chandrasekharan, 1976).

The gum resin is bitter, acrid, astringent, thermogenic, aromatic, expectorant, digestive, anthelmintic, antiinflammatory, anodyne, antiseptic, demulcent, carminative, emmenagogue, haematinic, diuretic, lithontriptic, rejuvenating and general tonic. Guggulipid is hypocholesteremic (Husain et al, 1992; Warrier et al, 1994).... indian bdellium

Cloves

Eugenia caryophyllata. N.O. Myrtaceae.

Synonym: Clavos.

Habitat: Indigenous to the Molucca Island, cultivated in Zanzibar, Madagascar, Java, Penang.

Features ? Flower buds brown ; nail-shaped, calyx tube encloses ovary containing tiny ovules; four calyx teeth surrounded by unopened corolla consisting of four petals.

Part used ? Flower buds.

Action: Stimulant, aromatic, carminative.

Combined with more specific remedies in flatulence and other affections of the alimentary tract. Is an excellent carminative to reduce griping action of purgatives. Dose, 1 to 2 tablespoonfuls of the infusion.

Coffin holds that Cloves are the most powerful of all the carminatives.... cloves

Common Indigo

Indigofera tinctoria

Papilionaceae

San:Nilini, Ranjani, Nilika, Neelam, Aklika, Asita, Bhadra; Ben, Guj:Nil;

Hin:Gouli;

Mal: Neelamari;

Tam: Averi;

Tel: Aviri, Nili;

Kan: Nili; Mar: Nali; Ori: Neli

Importance: Common indigo or Indian indigo is a branching shrub which grows upto 2m high. Nili is a reputed drug produced from this plant which is used in ayurveda for the promotion of hair growth and it forms a major ingredient of preparations like nilibhringadi oil. This is the original source of natural indigo. Due to antitoxic property it is also a good remedy for poisons. According to Bhavaprakasa, nili is purgative in action, bitter, hot, cures giddiness, abdominal enlargement, vatarakta, gout and intestinal obstruction. The decoction or powder of the plant is used in whooping cough, bronchitis, palpitation of the heart, enlargement of the liver and spleen, dropsy, diseases of lungs and kidney, epilepsy and nervous disorders. A poultice of the leaves is recommended in skin diseases, piles, ulcer and haemorrhoids. A wine glass full juice of the leaves is administered in the morning with or without milk for three days to those who have been bitten by mad dogs. Root decoction is given in calculous diseases and used as an antidote to arsenic poisoning. The seed of the plant is powered and steeped in arrack or rum, yield a tincture, which is used to distroy lice. Indigo, the dye extracted from the leaves, is a soothing balm for burns and scalds, insect stings and animal bites. The synonyms visaghni and sodhani indicate the antitoxic and laxative properties of the drug nili, respectively (Aiyer and Kolammal, 1960).

Distribution: This plant is distributed in South and South East Asia, tropical Africa and is introduced in tropical America. In India, it is found almost throughout and cultivated in many parts.

Botany: Indigofera tinctoria Linn. syn. I. summatrana Gaertn, Pigmentum indicum belongs to Papilionaceae family. This is a branching shrub which grows upto 2m high. Stems and branches are green; branchlets silvery pubescent. Leaves are alternate, stipulate, imparipinnate and got 7-13 leaflets which are elliptic-oblong, membraneous,1.7x0.9cm, shortly mucronate, pale green or bluish. Flowers are small, rose-coloured in axillary racemes. Calyx 5-cleft, gamosepalous; corolla papilionaceous; stamens diadelphous; ovary sessile with a short incurved style ending in a capitate stigma. Pods are linear, cylindrical, 2-5cm long, deflexed having 8-12 seeds.

Agrotechnology: The Indian indigo requires good sunlight and grows well in hilly areas. This is usually propagated by seeds. Seeds are very small and the seed rate is 3kg/ha. Seeds require pretreatment for good germination as the seed coat is hard. Seeds are mixed with sand and ground gently to break the seed coat. An alternate method for enhancing germination is dipping the seeds in boiling water for a second. After pretreatment seeds are broadcasted. Broadcast the seeds preferably mixed with sand 2 or 3 times its volume to ensure uniform coverage. The seedbeds should be covered with straw and irrigated. Seeds germinate within 15 days. Seedlings are ready for transplanting after one month. For the land preparation, the soil is brought to fine tilth by ploughing 2 or 3 time s. Cattle manure should be applied at the rate of 10t/ha as basal dressing and incorporated into soil along with last ploughing. The best time for sowing is September-October. Weeding has to be done two times; 3 weeks after sowing and 6 weeks after sowing. Plants start flowering 2-3 months after sowing. Harvesting is done by cutting the plants at this time, at a height of about 10cm from ground level. Irrigate plants after harvest. Subsequent harvests can be made at 1.5-2 months interval. Four to five cuttings can be taken in an year depending on the growth. A few plants per plot are left without cutting to set seeds. Ripe pods are to be harvested in the early morning to prevent loss of seeds by shattering during harvest.

Properties and activity: A blue dyestuff is obtained from the indigofera which does not exist ready formed, but is produced during fermentation from another agent existing in the plant, known as indocan. Indocan is yellow amorphous of a nauseous bitter taste with an acid reaction, readily soluble in water, alcohol and ether. An artificial product indigotine is manufactured chemically and used as a substitute. Indirubin is another component of the plant.

The plant is deobstruent, alterative, antitoxic, antiasthmatic and antiepileptic. Aerial part is hypoglycaemic, CNS depressant and antitoxic. The leaves, flowers and tender shoots are considered to be cooling, demulcent and alterative. Leaf is antiinflammatory. Root and stem is laxative, expectorant, antitumourous, febrifuge, anticephalalgic, antidote for snake bite, anthelmintic and promotes growth of hair. Root is divertic. Indirubin is antineoplastic and has toxicity. Nili is antitoxic, purgative and laxative. Indigo is said to produce nausea and vomiting.... common indigo

Coomb Teak

Gmelina arborea

Verbenaceae

San: Gumbhari;

Hin:Gamari, Jugani-chukar;

Mal: Kumizhu, Kumpil;

Guj: Shewan; Pun:Gumbar; Mar: Shivanasal;

Kan: Kummuda;

Tam: Uni, Gumadi;

Tel: Gummadi;

Importance: Coomb teak, Candahar tree or Kashmeeri tree is a moderate sized, unarmed, deciduous tree which is a vital ingredient of the ”dasamula” (group of ten roots). The whole plant is medicinally very important. It promotes digestive power, improves memory, overcomes giddiness and is also used as an antidote for snake bite and scorpion sting. Roots are useful in hallucination, fever, dyspepsia, hyperdipsia, haemorrhoids, stomachalgia, heart diseases, nervous disorders, piles and burning sensation. Bark is used in fever and dyspepsia. Leaf paste is good for cephalagia and leaf juice is a good wash for foul ulcers and is also used in the treatment of gonorrhoea and cough. Flowers are recommended for leprosy, skin and blood diseases. The fruits are used for promoting the growth of hair and in anaemia, leprosy, ulcers, constipation, strangury, leucorrhoea, colpitis and lung disease.

Wood is one of the best and most reliable timber of India. It is used for making furniture, planks, carriages, printing boxes, musical instruments, shafts, axles, picture frames, jute bobbins, calipers, ship buildings, artificial limbs and stethoscopes.

In south India the bark of the tree is used by arrack manufacturers to regulate the fermentation of toddy. The plant is also grown in garden or avenues (Dey, 1988; Sivarajan and Indira, 1994).

Distribution: The plant is found wild throughout India from the foot of Himalayas to Kerala and Anadamans, in moist, semideciduous and open forests upto an altitude of 1500 m. It is also distributed in Sri Lanka and Philippines.

Botany: Gmelina arborea Roxb. Syn. Premna arborea Roth. belongs to Family Verbenaceae. It is an unarmed deciduous tree growing up to 20m height with whitish grey corky lenticellate bark, exfloliating in thin flakes. Branchlets and young parts are clothed with fine white mealy pubescence. Leaves are simple, opposite, broadly ovate, cordate, glandular, glabrous above when mature and fulvous-tomentose beneath. Flowers brownish yellow in terminal panicle. Calyx campanulate, pubescent outside and with 5 lobes. Corolla showy brownish yellow with short tube and oblique limbs. Stamens 4, didynamous and included. Ovary is 4 chambered with one ovule each; style slender ending in a bifid stigma. Fruits are fleshy ovoid drupes, orange yellow when ripe. Seeds 1 or 2, hard and oblong.

Agrotechnology: Coomb teak is a sun loving plant. It does not tolerate drought. But it grows in light frost. Rainfall higher than 2000mm and loose soil are ideal. The best method of propagation is by seeds but rarely propagated vegitatevely by stem cuttings also. Seed formation occurs in May-June. Seeds are dried well before use. They are soaked in water for 12 hours before sowing. Seed rate is 3kg/ha. Seeds are sown in nursery beds shortly before rains. Seeds germinate within one month. Seedlings are transplanted in the first rainy season when they are 7-10cm tall. Pits of size 50cm cube are made at a spacing of 3-4m and filled with sand, dried cowdung and surface soil, over which the seedlings are transplanted. 20kg organic manure is given once a year. Irrigation and weeding should be done on a regular basis. The common disease reported is sooty mould caused by Corticium salmonicolor which can be controlled by applying a suitable fungicide. The tree grows fast and may be ready for harvesting after 4 or 5 years. This plant is coppiced and traded. The roots are also used for medicinal purposes. The tree may stand up to 25 years.

Properties and activity: Roots and heart wood of Coomb teak are reported to contain gmelinol, hentriacontanol, n-octacosanol and -sitosterol. The roots contain sesquiterpenoid and apiosylskimmin, a coumarin characterised as umbelliferone-7-apiosyl glucoside and gmelofuran. The heart wood gives ceryl alcohol, cluytyl ferulate, lignans, arboreol, gmelonone, 6”-bromo isoarboreol, lignan hemiacetal and gummidiol. Leaves yield luteolin, apigenin, quercetin, hentriacontanol, -sitosterol, quercetogenin and other flavons. Fruits contain butyric acid, tartaric acid, and saccharine substances (Asolkar et al, 1992; Dey, 1988).

The roots are acrid, bitter, tonic, stomachic, laxative, galactogogue, demulcent, antibilious, febrifuge and anthelmintic. Bark is bitter, hypoglycaemic, antiviral, anticephalalgic and tonic. The leaves are demulcent, antigonorrhoeic and bechic. Flowers are sweet, refrigerant, astringent and acrid. Fruits are acrid, refrigerant, diuretic, astringent, aphrodisiac, trichogenous, alterant and tonic (Warrier et al; 1995).... coomb teak

Cowslip

Primula veris. N.O. Primulaceae.

Synonym: Herb Peter, Paigles, Palsywort.

Habitat: Moist pastures and open places.

Features ? Round, downy stem rising well above the leaves, which lie, rosette-like, on the ground. Leaves grow from the root, stalkless, undivided, velvety appearance similar to primrose leaves, but shorter and rounder. Yellow, tubular flowers bunch together on one stalk, each flower emerging from the same point, outer blossoms drooping.

Part used ? Corolla.

Action: Antispasmodic, sedative.

In the reduction of involuntary spasmodic movements, restlessness and similar symptoms. Used also in insomnia. The usual herbal infusion is taken in tablespoonfuls as required.

Both cowslip and primrose were at one time prescribed for rheumatism, gout and paralysis, but their value in these diseases has long since been disproved.... cowslip

Datura Metel

Linn.

Synonym: D. fastuosa Linn.

Family: Solanaceae.

Habitat: Throughout India, particularly in waste place.

English: Thornapple, Downy Datura.

Ayurvedic: Dhattuura, Dhuurta, Dhastura, Unmatta, Shivapriya, Harapriya, Hema, Haatta, Dhustuu- ra, Dhustuuraka, Kanaka, Maatula. Also equated with Raaj-dhatuura. (white var.)

Unani: Dhaturaa.

Siddha/Tamil: Oomatthai, Karu- voomatthai.

Action: Various plant parts are used in headache, hemiplegia, epilepsy, delirium, convulsions, cramps, rigid thigh muscles, rheumatism. Leaf— antitumour, antirheumatic. Leaf and corolla—anti-inflammatory. Flower—antiasthmatic. Seed, leaf and root—anticatarrhal, febrifuge, antidiarrhoeal, antidermatosis; also used in cerebral complications. Seeds—used in asthma. Limited use in kinetosis (excessive salivation, nausea and vomiting).

Along with other therapeutic applications, The Ayurvedic Pharmacopoeia ofIndia indicated the use of the whole plant in dysuria and alopecia.

The plant accumulates more hyos- cine than hyoscyamine. Hyoscine content of dried leaves and flowering tops—between 0.02-0.55%. Alkaloid content of leaves—0.55%; stem—0.4%; seeds—0.19%; pericarps—0.8%; root at flowering of the plant—0.77%.

Hyoscine in large doses causes delirium and coma.

Dosage: Seed—30-60 mg. (API Vol. III.)... datura metel

Gymnema Tea - The Destroyer Of Sugar

Gymnema tea is known for its sugar killing properties. Gymnema (gymnema sylvestre) is a woody plant that grows mainly in the forests of central and southern India. The plant climbs on bushes and trees, has elliptical leaves and small flowers with a yellow corolla. Gymnema is also known as the “destroyer of sugar”. In ancient times, some physicians noticed that chewing gymnema leaves can suppress the taste of sugar. Currently, gymnena is being administrated in India to those who suffer from diabetes, for increasing insulin levels and controlling the blood sugar levels. The constituents of gymnema tea are gymnemic acid, parabin, glucose and carbohydrates. How To Make Gymnema Tea Brewing gymnema tea is a very simple process. You can make it by combining dried gymnema leaves with green tea loose leaf and placing them into boiled water. Let the mix steep for about 5-7 minutes. The more you let it steep, the more intensified the flavor will be. Gymnema Tea Benefits
  • Helps reducing blood sugar levels.
  • Is a strong allied in the process of weight loss.
  • May help treat swollen glands.
  • Has anti-inflammatory properties.
  • Helps treating snakebites.
  • Reduces the craving for sugar.
Gymnema Tea Side Effects
  • Pregnant and breastfeeding women should not drink gymnema tea. Not enough is known about consuming gymnema tea during pregnancy so, it is better to avoid it.
  • Gymnema tea may interfere with blood sugar control during and after surgical procedures.
Ass you can see, gymnema tea has a lot of health benefits. Just make sure you stay away from its side effects and, also, avoid over-consumption! No more than 1-2 cups of gymnema tea per day!... gymnema tea - the destroyer of sugar

Indian Beech

Pongamia pinnata

Papilionaceae

San: Karanj;

Hin: Karanja, Dittouri;

Ben: Dehar karanja;

Mal: Ungu, Pongu; Guj, Mar, Pun: Karanj;

Kan: Hongae;

Tel: Kangu;

Tam: Puggam; Ass: Karchaw; Ori: Koranjo

Importance: Indian beech, Pongam oil tree or Hongay oil tree is a handsome flowering tree with drooping branches, having shining green leaves laden with lilac or pinkish white flowers. The whole plant and the seed oil are used in ayurvedic formulations as effective remedy for all skin diseases like scabies, eczema, leprosy and ulcers. The roots are good for cleaning teeth, strengthening gums and in gonorrhoea and scrofulous enlargement. The bark is useful in haemorhoids, beriberi, ophthalmopathy and vaginopathy. Leaves are good for flatulence, dyspepsia, diarrhoea, leprosy, gonorrhoea, cough, rheumatalgia, piles and oedema. Flowers are given in diabetes. Fruits overcomes urinary disease and piles. The seeds are used in inflammations, otalgia, lumbago, pectoral diseases, chronic fevers, hydrocele, haemorrhoids and anaemia. The seed oil is recommended for ophthalmia, haemorrhoids, herpes and lumbagoThe seed oil is also valued for its industrial uses. The seed cake is suggested as a cheap cattle feed. The plant enters into the composition of ayurvedic preparations like nagaradi tailam, varanadi kasayam, varanadi ghrtam and karanjadi churna.

It is a host plant for the lac insect. It is grown as a shade tree. The wood is moderately hard and used as fuel and also for making agricultural implements and cart- wheels.

Distribution: The plant is distributed throughout India from the central or eastern Himalaya to Kanyakumari, especially along the banks of streams and rivers or beach forests and is often grown as an avenue tree. It is distributed in Sri Lanka, Burma, Malaya, Australia and Polynesia.

Botany: Pongamia pinnata (Linn.) Pierre syn. P. glabra Vent., Derris indica (Lam.) Bennet, Cystisus pinnatus Lam. comes under family Papilionaceae. P. pinnata is a moderate sized, semi -evergreen tree growing upto 18m or more high, with a short bole, spreading crown and greyish green or brown bark. Leaves imparipinnate, alternate, leaflets 5-7, ovate and opposite. Flowers lilac or pinkish white and fragrant in axillary recemes. Calyx cup-shaped, shortly 4-5 toothed, corolla papilionaceous. Stamens 10 and monadelphous, ovary subsessile, 2-ovuled with incurved, glabrous style ending in a capitate stigma. Pod compressed, woody, indehiscent, yellowish grey when ripe varying in size and shape, elliptic to obliquely oblong, 4.0-7.5cm long and 1.7-3.2cm broad with a short curved beak. Seeds usually 1, elliptic or reniform, wrinkled with reddish brown, leathery testa.

Agrotechnology: The plant comes up well in tropical areas with warm humid climate and well distributed rainfall. Though it grows in almost all types of soils, silty soils on river banks are most ideal. It is tolerant to drought and salinity. The tree is used for afforestation, especially in watersheds in the drier parts of the country. It is propagated by seeds and vegetatively by rootsuckers. Seed setting is usually in November. Seeds are soaked in water for few hours before sowing. Raised seed beds of convenient size are prepared, well rotten cattle manure is applied at 1kg/m2 and seeds are uniformly broadcasted. The seeds are covered with a thin layer of sand and irrigated. One month old seedlings can be transplanted into polybags, which after one month can be planted in the field. Pits of size 50cm cube are dug at a spacing of 4-5m, filled with top soil and manure and planted. Organic manure are applied annually. Regular weeding and irrigation are required for initial establishment. The trees flower and set fruits in 5 years. The harvest season extends from November- June. Pods are collected and seeds are removed by hand. Seed, leaves, bark and root are used for medicinal purposes. Bark can be collected after 10 years. No serious pests and diseases are reported in this crop.

Properties and activity: The plant is rich in flavonoids and related compounds. Seeds and seed oil, flowers and stem bark yield karanjin, pongapin, pongaglabrone, kanugin, desmethoxykanugin and pinnatin. Seed and its oil also contain kanjone, isolonchocarpin, karanjachromene, isopongachromene, glabrin, glabrachalcone, glabrachromene, isopongaflavone, pongol, 2’- methoxy-furano 2”,3”:7,8 -flavone and phospholipids. Stem-bark gives pongachromene, pongaflavone, tetra-O-methylfisetin, glabra I and II, lanceolatin B, gamatin, 5-methoxy- furano 2”,3”:7,8 -flavone, 5-methoxy-3’,4’-methelenedioxyfurano 2”,3”:7,8 -flavone and - sitosterol. Heartwood yields chromenochalcones and flavones. Flowers are reported to contain kanjone, gamatin, glabra saponin, kaempferol, -sitosterol, quercetin glycocides, pongaglabol, isopongaglabol, 6-methoxy isopongaglabol, lanceolatin B, 5-methoxy-3’,4’- methelenedioxyfurano 8,7:4”,5” -flavone, fisetin tetramethyl ether, isolonchocarpin, ovalichromene B, pongamol, ovalitenon, two triterpenes- cycloart-23-ene,3 ,25 diol and friedelin and a dipeptide aurantinamide acetate.

Roots and leaves give kanugin, desmethoxykanugin and pinnatin. Roots also yield a flavonol methyl ether-tetra-O-methyl fisetin. The leaves contain triterpenoids, glabrachromenes I and II, 3’-methoxypongapin and 4’-methoxyfurano 2”,3”:7,8 -flavone also. The gum reported to yield polysaccharides (Thakur et al, 1989; Husain et al, 1992).

Seeds, seed oil and leaves are carminative, antiseptic, anthelmintic and antirheumatic. Leaves are digestive, laxative, antidiarrhoeal, bechic, antigonorrheic and antileprotic. Seeds are haematinic, bitter and acrid. Seed oil is styptic and depurative. Karanjin is the principle responsible for the curative properties of the oil. Bark is sweet, anthelmintic and elexteric.... indian beech

Indian Ginseng

Withania somnifera

Solanceae

San: Aswagandha, Varahakarni

Hin: Asgandh, Punir Mal: Amukkuram

Tam: Amukkira

Tel: Vajigandha

Mar: Askandha

Guj: Ghoda

Kan: Viremaddinagaddi

Importance: Indian ginseng or Winter cherry is an erect branching perennial undershrub which is considered to be one of the best rejuvenating agents in Ayurveda. Its roots, leaves and seeds are used in Ayurvedic and Unani medicines, to combat diseases ranging from tuberculosis to arthritis. The pharmacological activity of the plant is attributed to the presence of several alkaloids and withaniols. Roots are prescribed in medicines for hiccup, several female disorders, bronchitis, rheumatism, dropsy, stomach and lung inflammations and skin diseases. Its roots and paste of green leaves are used to relieve joint pains and inflammation. It is also an ingredient of medicaments prescribed for curing disability and sexual weakness in male. Leaves are used in eye diseases. Seeds are diuretic. It is a constituent of the herbal drug ‘Lactare’ which is a galactagogue.

Aswagandha was observed to increase cell-mediated immunity, prevent stress induced changes in adrenal function and enhance protein synthesis. Milk fortified with it increases total proteins and body weight. It is a well known rejuvenating agent capable of imparting long life, youthful vigour and intellectual power. It improves physical strength and is prescribed in all cases of general debility. Aswagandha powder (6-12g) twice a day along with honey and ghee is advised for tuberculosis in Sushruta Samhita. It also provides sound sleep (Prakash, 1997).

Distribution: Aswagandha is believed to have oriental origin. It is found wild in the forests of Mandsaur and Bastar in Mandhya Pradesh, the foot hills of Punjab, Himachal Pradesh, Uttar Pradesh and western Himalayas in India. It is also found wild in the Mediterranean region in North America. In India it is cultivated in Madhya Pradesh, Rajastan and other drier parts of the country.

Botany: Aswagandha belongs to the genus Withania and family Solanaceae. Two species, viz, W. coagulans Dunal and W. somnifera Dunal are found in India. W. coagulans is a rigid grey under shrub of 60-120cm high. W. somnifera is erect, evergreen, tomentose shrub, 30-75cm in height. Roots are stout, fleshy, cylindrical, 1-2cm in diameter and whitish brown in colour. Leaves are simple, ovate, glabrous and opposite. Flowers are bisexual, inconspicuous, greenish or dull yellow in colour born on axillary umbellate cymes, comprising 5 sepals, petals and stamens each; the two celled ovary has a single style and a bilobed stigma. The petals are united and tubular. The stamens are attached to the corolla tube and bear erect anthers which form a close column or cone around the style. Pollen production is poor. The fruit is a small berry, globose, orange red when mature and is enclosed in persistent calyx. The seeds are small, flat, yellow and reniform in shape and very light in weight. The chromosome number 2n = 48.

The cultivated plants have sizable differences from the wild forms not only in their morphological characters but also in the therapeutical action, though the alkaloids present are the same in both (Kaul, 1957). Some botanists, therefore, described the cultivated plant distinct from wild taxa and have coined a new name W. aswagandha (Kaul, 1957) which is contested by Atal and Schwarting (1961).

Agrotechnology: Asgandh is a tropical crop growing well under dry climate. The areas receiving 600 to 750mm rainfall is best suited to this crop. Rainy season crop requires relatively dry season and the roots are fully developed when 1-2 late winter rains are received. Sandy loam or light red soils having a pH of 7.5- 8.0 with good drainage are suitable for its cultivation. It is usually cultivated on poor and marginal soils. Withania is propagated through seeds. It is a late kharif crop and planting is done in August. Seeds are either broadcast-sown or seedlings are raised in nursery and then transplanted. Seed rate is 10-12 kg/ha for broadcasting and 5kg/ha for transplanting. In direct sown crop plants are thinned and gap filling is done 25-30 days after sowing. Seeds should be treated with Dithane M-45 at 3g/kg of seeds before sowing. Seeds are sown in the nursery just before the onset of rainy season and covered with light soil. Seeds germinate in 6-7 days. When seedlings are six weeks old they are transplanted at 60cm in furrows taken 60cm apart. The crop is mainly grown as a rainfed crop on residual fertility and no manure or fertilizers are applied to this crop generally. However, application of organic manure is beneficial for realizing better yields. It is not a fertilizer responsive crop. One hand weeding 25-30 days after sowing helps to control weeds effectively. No serious pest is reported in this crop. Diseases like seedling rot and blight are observed. Seedling mortality becomes serious under high temperature and humid conditions. The disease can be minimized by use of disease free seeds and treatment with thiram or deltan at 3-4g/kg seed before sowing. Further, use of crop rotation, timely sowing and keeping field well drained also protect the crop. Spraying with 0.3% fytolan, dithane Z-78 or dithane M-45 will help controlling the disease incidence. Spraying is repeated at 15 days interval if the disease persists. Aswagandha is a crop of 150-170 days duration. The maturity of the crop is judged by the drying of the leaves and reddening of berries. Harvesting usually starts from January and continues till March. Roots, leaves and seeds are the economical parts. The entire plant is uprooted for roots, which are separated from the aerial parts. The berries are plucked from dried plants and are threshed to obtain the seeds. The yield is 400-500kg of dry roots and 50-75kg seeds per hectare.

Post harvest technology: The roots are separated from the plant by cutting the stem 1-2cm above the crown.

Roots are then cut into small pieces of 7-10cm to facilitate drying. Occasionally, the roots are dried as a whole. The dried roots are cleaned, trimmed, graded, packed and marketed. Roots are carefully hand sorted into the following four grades.

Grade A: Root pieces 7cm long, 1-1.5cm diameter, brittle, solid, and pure white from outside.

Grade B: Root pieces 5cm long, 1cm diameter, brittle, solid and white from outside.

Grade C: Root pieces 3-4cm long, less than 1cm diameter and solid. Lower grade: Root pieces smaller, hollow and yellowish from outside.

Properties and activity: Aswagandha roots contain alkaloids, starch, reducing sugar, hentriacontane, glycosides, dulcital, withaniol acid and a neutral compound. Wide variation (0.13-0.31%) is observed in alkaloid content. Majumdar (1955) isolated 8 amorphous bases such as withanine, somniferine, somniferinine, somnine, withananine, withananinine, pseudowithanine and withasomnine. Other alkaloids reported are nicotine, tropine, pseudotropine, 3, -tigloyloxytropane, choline, cuscudohygrine, anaferine, anahygrine and others. Free aminoacids in the roots include aspartic acid, glycine, tyrosine, alanine, proline, tryptophan, glutamic acid and cystine. Leaves contain 12 withanolides, alkaloids, glycosides, glucose and free amino acids. Berries contain a milk coagulating enzyme, two esterases, free amino acids, fatty oil, essential oil and alkaloids. Methods for alkaloid’s analysis in Asgandh roots have also been reported (Majumdar, 1955; Mishra, 1989; Maheshwari, 1989). Withania roots are astringent, bitter, acrid, somniferous, thermogenic, stimulant, aphrodisiac, diuretic and tonic. Leaf is antibiotic, antitumourous, antihepatotoxic and antiinflammatory. Seed is milk coagulating, hypnotic and diuretic.... indian ginseng

Leadwort

Plumbago spp.

Plumbaginaceae

The genus Plumbago belonging to the family Plumbaginaceae is a popular and medicinally very important group of medicinal plants. Three species, namely P. rosea, P. zeylanica and P. auriculata have been identified. Among these P. rosea and P. zeylanica are important ones.

Plumbago, in general is an esteemed remedy for leucoderma and other skin diseases. The synonyms of fire like agnih, vahnih, etc. are attributed to this drug to indicate the very burning action of the root, causing blisters on the skin (daranah). The drug is used only after adequate curing and purification. Root is the officinal part and it enters into the composition of preparations like Citrakasavam, Dasamularista, Gulgulutiktaka kasaya, Yogarajachurna, etc.

1. P. rosea Linn. syn. P. indica Linn.

Eng: Rosy-flowered Leadwort; San: Citrakah, Dhahanah;

Hin: Lalcitra, Raktacitra;

Ben: Lalchita;

Mal: Kotuveli, Chettikkoduveli, Chuvannakotuveli;

Tam: Chenkotuveli, Cittiramulam;

Kan: Kempacitramula;

Tel: Yerracitramulam

Rosy-flowered leadwort or Fire plant is a native of Coromandel Coast. It is found throughout India, in moist situations as well as cultivated. The roots are useful in dyspepsia, colic, inflammations, cough, bronchitis, helmenthiasis, haemorrhoids, elephantiasis, chronic and intermittent fever, leprosy, leucoderma, ringworm, scabies, hepatosplenomegaly, amenorrhoea, odontalgia, vitiated conditions of vata, kapha and anaemia. It is a pretty subscandent perennial shrub with semi -woody striate stems and flexible branches. Leaves are simple, alternate oblong, short cuneate at the base passing into a very short amplexicaul, exauriculate, and reddish petiole. Flowers are bright red, arranged in long terminal spikes. The calyx ribs are covered with stipitate, bifarious and subsessile gland. Corolla tube is slender and four times as long as the calyx. The stout roots are cylindrical, irregularly bent, light yellowish brown with smooth surface having short transverse shallow fissures at the regions of the bents. A light yellowish juice excudes from the cut surface. A healthy plant may produce 18-20 stout roots (Warrier et al, 1995).

The chemical constituents include plumbagin and sitosterol glucoside. Clinical trials have demonstrated that plumbagin oil from P. indica is useful in common wart (Satyavati et al, 1987). The roots are acrid, astringent, thermogenic, anthelmintic, constipating, expectorant, antiinflammmatory, abortifacient, alterant, anti-periodic, carminative, digestive, sudorific, narcotic, gastric, nervous stimulant and rejuvenating. Root is a powerful sialogogue and vesicant.

2. P. zeylanica Linn.

Eng:White flowered Leadwort; San:Chitraka;

Hin, Ben:Chitarak, Chitra; Mal:Vellakotuveli

Tam: Sittragam, Chittiramoolam;

Kan: Vahini; Mar: Chitraka;

Tel: Chitramulam

White flowered Leadwort or Chitarak is found wild in peninsular India and mostly in West Bengal. Root is used externally in leprosy and other skin diseases or obstinate character, aphthae, abscesses, influenza, piles and anasarca. Juice is used externally in scabies and ulcers. One of the important preparations of Chitrak is “Yograjguggal”, prescribed for arthritis, rheumatism, etc. The other well known preparations are “Chitrak Adivati” and “ Chitraka Haritaki”. In Unani system it is an ingredient of “Aqaruva-i- Kabir”, “Hab Ashkhar”, “Ma’jun Baladur”, “Ma’jun Raig Mahi”, etc. It is a branched undershrub. Roots are long and tuberous. Stem is striate. Leaves are simple, alternate, short petioled, ovate or ovate-oblong, acute with entire or wavy margin, 7x3.8cm and glabrous. Flowers are white, arranged in terminal spikes. Calyx is tubular, glandular-hairy. Corolla tube is slender; limb rotate and 5 lobbed. Stamens are 5 on a disc. Style is slender with 5 stigmatic branches. Fruit is membranous capsule enclosed within the persistent calyx.

The roots of P. zeylanica have been exhaustively studied and naphthaquinones have been isolated, namely, plumbagin, 3-chlroplumbagin, droserone (Sidhu et al, 1971; Padhye et al, 1973), 3,3’-biplumbagin(Chitranone), zeylanone and iso-zeylanone and a coumarin, elliptinone (Sankaram et al, 1976, 1979). It also contains 1,2(3)-tetrahydro-3,3’-biplumbagin and plumbazeylanone. The leaf is antirheumatic. Root is appetiser, sudorific, relieves pain, vasicant, diuretic, caustic, antidiarrhoeal and expellent of phlegmatic tumours. Root is uterine stimulant. Root and fruits have antiimplantation activity. Plumbagin induces antiimplantation, has abortifacient and antiovulatory activity and causes selective testicular lesions in dogs. It is also a mitotic inhibitor. In lower concentration it behaves like a spindle, poison but in higher concentration it exhibits radiomimetic, nucleotoxic and cyclotoxic effects. It also has antibacterial, antifungal and anticoagulant activities and shows antagonism to amphetamine hyperactivity in mice.

3. P. auriculata Lam. syn. P. capensis

Eng: Blue flowered Leadwort;

Mal: Neelakotuveli

The blue flowered Leadwort is often grown in gardens throughout India (Moos, 1976; Chunekar, 1982; Sharma, 1983). It is a native of Cape Province in South Africa. It is a constituent of many Ayurvedic drugs (KAU, 1991). The plant is a subshrub growing to a height of 1-1.5m. Leaves are elliptic to obovate, 3-4 x 1.5-2cm. Inflorescence is a raceme of length 3-4cm. Corolla is blue to violet. Stamens are 5 in number. Flowers and fruits may be upto 12 in number (Matthew, 1995).

Agrotechnology: The plant is grown in tropical to subtropical ecosystems. Warm humid tropical climate is most suited. They come up well in almost all types of deep and well drained soils. It is propagated vegetatively by stem cuttings. Three stem cuttings of size 15cm long are planted in polybags of size 14x10cm. IAA and IBA treatments will improve rooting of cuttings. The land is to be ploughed well. About 4 tonnes of FYM are to be applied, mixed thoroughly and seed bed of size 50cm breadth, 1.5cm height and convenient length are to be prepared. On these beds pits are taken at a distance of 25cm and the rooted plants are transplanted from the polybags. Regular irrigation and weeding are to be carried out. In the second year with the onset of monsoon, seedbeds are again refreshed after adding about 4 tonnes of FYM. At the end of second year tubers are collected. Care should be taken to wear gloves, else the chemical plumbagin present in the roots will cause burning sensation. The collected tubers are washed, tied into bundles and marketed. Plumbago yields about 7-10t tubers/ha with good management (Prasad et al, 1997).... leadwort

Periwinkle

Catharanthus roseus

Apocynaceae

San: Nityakalyani;

Hin: Sadabahar, Baramassi;

Mal: Ushamalari, Nityakalyani

Tel: Billaganeru;

Tam: Sudukattu mallikai; Pun: Rattanjot;

Kan: Kasikanigale, Nitya Mallige

Importance: Periwinkle or Vinca is an erect handsome herbaceous perennial plant which is a chief source of patented cancer and hypotensive drugs. It is one of the very few medicinal plants which has a long history of uses as diuretic, antidysenteric, haemorrhagic and antiseptic. It is known for use in the treatment of diabetes in Jamaica and India. The alkaloids vinblastine and vincristine present in the leaves are recognized as anticancerous drugs. Vinblastine in the form of vinblastin sulphate is available in market under the trade name “VELBE” and Vincristine sulphate as “ONCOVIN” (Eli Lilly). Vinblastine is used in combination with other anticancer agents for the treatment of lymphocytic lymphoma, Hodgkin’s disease, testicular carcinoma and choriocarcinoma. Vincristine is used in acute leukemia, lymphosarcoma and Wilm’s tumour. Its roots are a major source of the alkaloids, raubasine (ajmalicine), reserpine and serpentine used in the preparation of antifibrillic and hypertension-relieving drugs. It is useful in the treatment of choriocarcinoma and Hodgkin’s disease-a cancer affecting lymph glands, spleen and liver. Its leaves are used for curing diabetes, menorrhagia and wasp stings. Root is tonic, stomachic, hypotensive, sedative and tranquilliser (Narayana and Dimri,1990).

Distribution: The plant is a native of Madagascar and hence the name Madagascar Periwinkle. It is distributed in West Indies, Mozambique, South Vi etnam, Sri Lanka , Philippines and Australia. It is well adapted to diverse agroclimatic situations prevalent in India and is commercially cultivated in the states of Tamil Nadu, Karnataka, Gujarat, Madhya Pradesh and Assam. USA, Hungary, West Germany, Italy, Netherlands and UK are the major consumers.

Botany: Catharanthus roseus (Linn.) G.Don.

syn. Vinca rosea Linn. belongs to the family Apocynaceae. It is an erect highly branched lactiferous perennial herb growing up to a height of one metre. Leaves are oblong or ovate, opposite, short-petioled, smooth with entire margin. Flowers are borne on axils in pairs. There are three flower colour types , pink, pink-eyed and white. Calyx with 5 sepal, green, linear, subulate. Corolla tube is cylindrical with 5 petals, rose-purple or white with rose-purple spot in the centre; throat of corolla tube hairy, forming a corona-like structure. The anthers are epipetalous borne on short filaments inside the bulging distal end of corolla tube converging conically above the stigma. Two characteristic secretary systems, namely a column like nectarium on both sides of pistil and a secretory cringulam circling the papillate stigma with a presumed role in pollination - fecundation process are present. Ovary bicarpellary, basally distinct with fused common style and stigma. The dehiscent fruit consists of a pair of follicles each measuring about 25 mm in length and 2.3 mm in diameter, containing up to thirty linearly arranged seeds with a thin black tegumen. On maturity, the follicles split along the length dehiscing the seeds.

Agrotechnology: Periwinkle grows well under tropical and subtropical climate. A well distributed rainfall of 1000 mm or more is ideal. In north India the low winter temperatures adversely affect the crop growth. It can grow on any type of soil ,except those which are highly saline, alkaline or waterlogged. Light soils, rich in humus are preferable for large scale cultivation since harvesting of the roots become easy.

Catharanthus is propagated by seeds. Fresh seeds should be used since they are short-viable. Seeds can be either sown directly in the field or in a nursery and then transplanted. Seed rate is 2.5 kg/ha for direct sowing and the seeds are drilled in rows 45 cm apart or broadcasted. For transplanted crop the seed rate is 500gm/ha. Seeds are sown in nursery and transplanted at 45x 30cm spacing after 60 days when the seedlings attain a height of 15-20cm Nursery is prepared two months in advance so that transplanting coincides with the on set of monsoons. Application of FYM at the rate of 15 t/ha is recommended. An alternate approach is to grow leguminous green manure crops and incorporate the same into the soil at flowering stage. Fertilisers are recommended at 80:40:40 kg N:P2O5:K2O/ha for irrigated crop and 60:30:30 kg/ha for rainfed crop. N is applied in three equal splits at planting and at 45 and 90 days after planting. 4 or 5 irrigations will be needed to optimise yield when rainfall is restricted. Fortnightly irrigations support good crop growth when the crop is grown exclusively as an irrigated crop. Weeding is carried out before each topdressing. Alternatively, use of fluchloraline at 0.75 kg a.i. /ha pre-plant or alachlor at 1.0 kg a.i. per ha as pre-emergence to weeds provides effective control of a wide range of weeds in periwinkle crop. Detopping of plants by 2cm at 50% flowering stage improves root yield and alkaloid contents. No major pests, other than Oleander hawk moth, have been reported in this crop. Fungal diseases like twig blight (top rot or dieback) caused by Phytophthora nicotianae., Pythium debaryanum, P. butleri and P. aphanidermatum; leaf spot due to Alternaria tenuissima, A. alternata, Rhizoctonia solani and Ophiobolus catharanthicola and foot-rot and wilt by Sclerotium rolfsii and Fusarium solani have been reported. However, the damage to the crop is not very serious. Three virus diseases causing different types of mosaic symptoms and a phyllody or little leaf disease due to mycoplasma -like organisms have also been reported; the spread of which could be checked by uprooting and destroying the affected plants.

The crop allows 3-4 clippings of foliage beginning from 6 months. The flowering stage is ideal for collection of roots with high alkaloid content. The crop is cut about 7 cm above the ground and dried for stem, leaf and seed. The field is irrigated, ploughed and roots are collected. The average yields of leaf, stem and root are 3.6, 1.5and 1.5 t/ha, respectively under irrigated conditions and 2.0, 1.0 and 0.75t/ha, respectively under rainfed conditions on air dry basis. The harvested stem and roots loose 80% and 70% of their weight, respectively. The crop comes up well as an undercrop in eucalyptus plantation in north India. In north western India a two year crop sequence of periwinkle-senna-mustard or periwinkle-senna- coriander are recommended for higher net returns and productivity (Krishnan,1995).

Properties and activity: More than 100 alkaloids and related compounds have so far been isolated and characterised from the plant. The alkaloid contents in different parts show large variations as roots 0.14-1.34%, stem 0.074-0.48%, leaves 0.32-1.16%, flowers 0.005-0.84%, fruits 0.40%, seeds 0.18% and pericarp 1.14% (Krishnan et al, 1983). These alkaloids includes monomeric indole alkaloids, 2-acyl indoles, oxindole, -methylene indolines, dihydroindoles, bisindole and others. Dry leaves contain vinblastine (vincaleucoblastine or VLB) 0.00013-0.00063%, and vincristine (leurocristine or LC) 0.0000003-0.0000153% which have anticancerous activity (Virmani et al, 1978). Other alkaloids reported are vincoside, isovincoside (strictosidine), catharanthine, vindolinine, lochrovicine, vincolidine, ajmalicine (raubasine), reserpine, serpentine, leurosine, lochnerine, tetrahydroalstonine, vindoline, pericalline, perivine, periformyline, perividine, carosine, leurosivine, leurosidine and rovidine. The different alkaloids possessed anticancerous, antidiabetic, diuretic, antihypertensive, antimicrobial, antidysenteric, haemorrhagic, antifibrillic, tonic, stomachic, sedative and tranquillising activities.... periwinkle

Pimpernel, Scarlet

Anagallis arvensis. N.O. Primulaceae.

Synonym: Poor Man's Weatherglass, Shepherd's Barometer (these names because the flowers close some hours before rain). Red Pimpernel.

Habitat: Cornfields, waste places and in gardens.

Features ? Stem square, weak, much branched, trailing with tendency to ascend, between six inches and one foot long. Leaves small, opposite, ovoid, sessile, entire at edges, black dots underneath. Flowers scarlet, corolla rotate, on long, slender, axillary stalk.

Part used ? Leaves.

Action: Diuretic, hepatic, diaphoretic.

The properties of this herb, although very active, are not yet fully known, and care should be exercised in using it. It has been successful in the treatment of liver irregularities, forms of rheumatism and dropsy. The pulverised leaves are administered in doses of from 15 to 60 grains.... pimpernel, scarlet

Clove

Syzygium aromaticum

FAMILY: Myrtaceae

SYNONYMS: Eugenia aromatica, E. caryophyllata, E. caryophyllus.

GENERAL DESCRIPTION: A slender evergreen tree with a smooth grey trunk, up to 12 metres high. It has large bright green leaves standing in pairs on short stalks. At the start of the rainy season long buds appear with a rosy pink corolla at the tip; as the corolla fades the calyx slowly turns deep red. These are beaten from the tree and, when dried provide the cloves of commerce.

DISTRIBUTION: Believed to be native to Indonesia; now cultivated worldwide, especially in the Philippines, the Molucca Islands and Madagascar. The main oil-producing countries are Madagascar, and Indonesia.

OTHER SPECIES: The clove tree has been cultivated in plantations for over 2000 years. The original wild trees found in the Moluccas, produce an essential oil that contains no eugenol at all.

HERBAL/FOLK TRADITION: Extensively used as a domestic spice worldwide. Tincture of cloves has been used for skin infections (scabies, athlete’s foot); for digestive upsets; to dress the umbilical cord; for intestinal parasites; to ease the pain of childbirth (steeped in wine); and notably for toothache. The tea is used to relieve nausea.

In Chinese medicine the oil is used for diarrhoea, hernia, bad breath and bronchitis as well as for those conditions mentioned above. In Indonesia, the ‘Kretak’ cigarette is popular, made from two parts tobacco and one part cloves.

ACTIONS: Anthelmintic, antibiotic, antiemetic, antihistaminic, antirheumatic, antineuralgic, anti-oxidant, antiseptic, antiviral, aphrodisiac, carminative, counter-irritant, expectorant, larvicidal, spasmolytic, stimulant, stomachic, vermifuge.

EXTRACTION: Essential oil by water distillation from the 1. buds and 2. leaves, and by steam distillation from the 3. stalks or stems. A concrete, absolute and oleoresin are also produced from the buds in small quantities.

CHARACTERISTICS: 1. Clove bud is a pale yellow liquid with a sweet-spicy odour and a fruity-fresh top note. The bud oil is favoured in perfumery work. It blends well with rose, lavender, vanillin, clary sage, bergamot, bay leaf, lavandin, allspice, ylang ylang and cananga. 2. Clove leaf is a dark brown oil with a crude, burnt-woody odour. 3. Clove stem oil is a pale yellow liquid with a strong spicy-woody odour.

PRINCIPAL CONSTITUENTS: 1. Bud: 60-90 per cent eugenol, eugenyl acetate, caryophyllene and other minor constituents. 2. Leaf: 82–88 per cent eugenol with little or no eugenyl acetate, and other minor constituents. 3. Stem: 90–95 per cent eugenol, with other minor constituents.

SAFETY DATA: All clove oils can cause skin and mucous membrane irritation; clove bud and stem oil may cause dermatitis in some individuals. Clove bud is the least toxic of the three oils due to the lower eugenol percentage. Use in moderation only in low dilution (less than 1 per cent).

AROMATHERAPY/HOME: USE Only use clove bud oil, not the leaf or stem oil.

Skin Care: Acne, athlete’s foot, bruises, burns, cuts, insect repellent (mosquito), toothache, ulcers, wounds.

Circulation Muscles And Joints: Arthritis, rheumatism, sprains.

Respiratory System: Asthma, bronchitis.

Digestive System: Colic, dyspepsia, nausea.

Immune System: Colds, ’flu, minor infections.

OTHER USES: Used in dental preparations, and as a fragrance component in toothpastes, soaps, toiletries, cosmetics and perfumes. Extensively employed as a flavour ingredient in major food categories, alcoholic and soft drinks. Used in the production of printing ink, glue and varnish; clove leaf oil is used as the starting material for the isolation of eugenol.... clove

Serpentwood

Rauvolfia serpentina

Apocynaceae

San: Sarpagandha

Hin: Chandrabhaga

Mal: Sarpagandhi, Amalpori

Tam: Chivan amelpodi

Kan: Sutranbhi

Tel: Patalagandhi

Introduction: Serpentwood is an erect, evergreen , perennial undershrub whose medicinal use has been known since 3000 years. Its dried root is the economical part which contains a number of alkaloids of which reserpine, rescinnamine, deserpidine, ajamalacine, ajmaline, neoajmalin, serpentine, -yohimbine are pharmacologically important. The root is a sedative and is used to control high blood pressure and certain forms of insanity. In Ayurveda it is also used for the treatment of insomnia, epilepsy, asthma, acute stomach ache and painful delivery. It is used in snake-bite, insect stings, and mental disorders. It is popular as “Madman’s medicine” among tribals. ‘Serpumsil’ tablet for high blood pressure is prepared from Rauvolfia roots. Reserpine is a potent hypotensive and tranquillizer but its prolonged usage stimulates prolactine release and causes breast cancer. The juice of the leaves is used as a remedy for the removal of opacities of the cornea.

Distribution: Rauvolfia serpentina is native to India. Several species of Rauvolfia are observed growing under varying edaphoclimatic conditions in the humid tropics of India, Nepal, Burma, Thailand, Bangladesh, Indonesia , Cambodia, Philippines and Sri Lanka. In India, it is cultivated in the states of Uttar Pradesh, Bihar, Tamil Nadu, Orissa, Kerala, Assam, West Bengal and Madhya Pradesh (Dutta and Virmani, 1964). Thailand is the chief exporter of Rauvolfia alkaloids followed by Zaire, Bangladesh, Sri Lanka, Indonesia and Nepal. In India, it has become an endangered species and hence the Government has prohibited the exploitation of wild growing plants in forest and its export since 1969.

Botany: Plumier in 1703 assigned the name Rauvolfia to the genus in honour of a German physcian -Leonhart Rauvolf of Augsburg. The genus Rauvolfia of Apocynaceae family comprises over 170 species distributed in the tropical and subtropical parts of the world including 5 species native to India. The common species of the genus Rauvolfia and their habitat as reported by Trivedi (1995) are given below.

R. serpentina Benth. ex Kurz.(Indian serpentwood) - India ,Bangladesh, Burma, Sri Lanka, Malaya, Indonesia

R. vomitoria Afz. (African serpentwood) - West Africa, Zaire, Rwanda, Tanzania R. canescens Linn. syn. R. tetraphylla (American serpentwood) - America, India R. mombasina - East Africa , Kenya, Mozambique

R. beddomei - Western ghats and hilly tracts of Kerala

R. densiflora - Maymyo, India

R. microcarpa - Thandaung

R. verticillata syn. R. chinensis - Hemsl

R. peguana - Rangoon-Burma hills

R. caffra - Nigeria, Zaire, South Africa

R. riularis - Nmai valley

R. obscura - Nigeria, Zaire

R. serpentina is an erect perennial shrub generally 15-45 cm high, but growing upto 90cm under cultivation. Roots nearly verticle, tapering up to 15 cm thick at the crown and long giving a serpent-like appearance, occasionally branched or tortuous developing small fibrous roots. Roots greenish-yellow externally and pale yellow inside, extremely bitter in taste. Leaves born in whorls of 3-4 elliptic-lanceolate or obovate, pointed. Flowers numerous borne on terminal or axillary cymose inflorscence. Corolla tubular, 5-lobed, 1-3 cm long, whitish-pink in colour. Stamens 5, epipetalous. Carpels 2, connate, style filiform with large bifid stigma. Fruit is a drupe, obliquely ovoid and purplish black in colour at maturity with stone containing 1-2 ovoid wrinkled seeds. The plant is cross-pollinated, mainly due to the protogynous flowers (Sulochana ,1959).

Agrotechnology: Among the different species of Rauvolfia, R. serpentina is preferred for cultivation because of higher reserpine content in the root. Though it grows in tropical and subtropical areas which are free from frost, tropical humid climate is most ideal. Its common habitats receive an annual rain fall of 1500-3500 mm and the annual mean temperature is 10-38 C. It grows up to an elevation of 1300-1400m from msl. It can be grown in open as well as under partial shade conditions. It grows on a wide range of soils. Medium to deep well drained fertile soils and clay-loam to silt-loam soils rich in organic matter are suitable for its cultivation. It requires slightly acidic to neutral soils for good growth.

The plant can be propagated vegetatively by root cuttings, stem cuttings or root stumps and by seeds. Seed propagation is the best method for raising commercial plantation. Seed germination is very poor and variable from 10-74%. Seeds collected during September to November give good results. It is desirable to use fresh seeds and to sock in 10% sodium chloride solution. Those seeds which sink to the bottom should only be used. Seeds are treated with ceresan or captan before planting in nursery to avoid damping off. Seed rate is 5-6 kg/ha. Nursery beds are prepared in shade, well rotten FYM is applied at 1kg/m2 and seeds are dibbled 6-7cm apart in May-June and irrigated.

Two months old seedlings with 4-6 leaves are transplanted at 45-60 x 30 cm spacing in July -August in the main field. Alternatively, rooted cuttings of 2.5-5cm long roots or 12-20cm long woody stems can also be used for transplanting. Hormone (Seradix) treatment increases rooting. In the main field 10-15 t/ha of FYM is applied basally. Fertilisers are applied at 40:30:30kg N: P2O5 :K2O/ha every year. N is applied in 2-3 splits. Monthly irrigation increases the yield. The nursery and the main field should be kept weed free by frequent weeding and hoeing. In certain regions intercroping of soybean, brinjal, cabbage, okra or chilly is followed in Rauvolfia crop.

Pests like root grubs (Anomala polita), moth (Deilephila nerii), caterpillar (Glyophodes vertumnalis), black bugs and weevils are observed on the crop, but the crop damage is not serious. The common diseases reported are leaf spot (Cercospora rauvolfiae, Corynespora cassiicola), leaf blotch (Cercospora serpentina), leaf blight (Alternaria tenuis), anthracnose (Colletotrichum gloeosporioides), die back (Colletotrichum dematrium), powdery mildew (Leviellula taurica), wilt (Fusarium oxysporum), root-knot (Meloidogyne sp.), mosaic and bunchy top virus diseases. Field sanitation, pruning and burning of diseased parts and repeated spraying of 0.2% Dithane Z-78 or Dithane M-45 are recommended for controlling various fungal diseases. Rauvolfia is harvested after 2-3 years of growth. The optimum time of harvest is in November -December when the plants shed leaves, become dormant and the roots contain maximum alkaloid content. Harvesting is done by digging up the roots by deeply penetrating implements (Guniyal et al, 1988).

Postharvest technology: The roots are cleaned washed cut into 12-15cm pieces and dried to 8-10% moisture.

The dried roots are stored in polythene lined gunny bags in cool dry place to protect it from mould. The yield is 1.5-2.5 t/ha of dry roots. The root bark constitutes 40-45% of the total weight of root and contributes 90% of the total alkaloids yield.

Properties and activity: Rauvolfia root is bitter, acrid, laxative, anthelmintic, thermogenic, diuretic and sedative. Over 200 alkaloids have been isolated from the plant. Rauvolfia serpentina root contains 1.4-3% alkaloids. The alkaloids are classsified into 3 groups, viz, reserpine, ajmaline and serpentine groups. Reserpine group comprising reserpine, rescinnamine, deserpine etc act as hypotensive, sedative and tranquillising agent. Overdose may cause diarrhoea, bradycardia and drowsiness. Ajmaline, ajmalicine, ajmalinine, iso-ajmaline etc of the ajmaline group stimulate central nervous system, respiration and intestinal movement with slight hypotensive activity. Serpentine group comprising serpentine, sepentinine, alstonine etc is mostly antihypertensive. (Husain,1993; Trivedi, 1995; Iyengar, 1985).... serpentwood

Strychnine Tree

Strychnos nux-vomica

Loganiaceae

San: Karaskara;

Hin: Kajra, Kuchila;

Mal: Kanjiram; ;

Tam: Itti, Kagodi, Kanjirai Mar:Jharkhatchura;

Kan: Hemmushti, Ittangi;

Tel: Mushti, Mushidi; Ori: Kora, Kachila

Importance: It is a large deciduous tree, with simple leaves and white fragrant flowers.

Strychnos is highly toxic to man and animals producing stiffness of muscles and convulsions, ultimately leading to death. However, in small doses it can also serve as efficacious cure forms of paralysis and other nervous disorders. The seeds are used as a remedy in intermittent fever, dyspepsia, chronic dysentery, paralytic and neuralgic affections, worms, epilepsy, chronic rheumatism, insomnia and colic. It is also useful in impotence, neuralgia of face, heart disease, spermatorrhoea, skin diseases, toxins, wounds, emaciation, cough and cholera. Leaves are applied as poultice in the treatment of chronic wounds and ulcers and the leaf decoction is useful in paralytic complaints. Root and root bark used in fever and dysentery (Nadkarni, 1982; Kurup et al, 1979).

Distribution: The plant is distributed throughout India in deciduous forests up to 1200m. It is also found in Sri Lanka, Siam, Indochina and Malaysia.

Botany: Strychnos nux-vomica Linn. is a large tree belonging to the family Loganiaceae. Leaves are simple, opposite, orbicular to ovate, 6-11.5x6-9.5cm, coriaceous, glabrous, 5 nerved, apex obtuse, acute or apiculate, transverse nerves irregular and inconspicuous. Inflorescence is many flowered terminal cymes, 2.5-5cm across. Bracts (5mm) and bracteoles (1.5mm) small. Flowers are white or greenish white and fragrant. Calyx 5 lobed, pubescent and small (2mm). Corolla salver shaped, tube cylindrical slightly hairy near the base within and greenish white, tube much elongate than the lobes. Tube 7mm and lobes 2.5mm long. Lobes 5 and valvate. Stamens 5, filaments short, 0.1mm long. Anthers 1.5mm subexerted, linear oblong. Ovary 1.5 mm, pubescent, 2 celled, ovules one to many. Style 9mm, stigma capitate. Fruit is a berry, 5-6cm diameter, globose, indehiscent, thick shelled, orange red when ripe with fleshy pulp enclosing the seeds. Seeds 1-many, discoid, compressed, coin like, concave on one side and convex on the other, covered with fine grey silky hairs.

The leaf fall is during December (do not shed all the leaves at a time) and new foliage appears in February. Flowering is during March - April and fruiting during May - December. Fruits take about 8-9 months to mature.

Properties and activity: Strychnine and brucine are the most important and toxic alkaloids present in the plant. They occur not only in the seeds but also in roots, wood, bark, fruit pulp and hard fruit shells. The minor alkaloids present in the plant are vomicine, -colubrine, -colubrine, pseudostrychnine and N-methyl-sec-pseudobrucine (novacine). Loganin a glycoside is also present (Warnat, 1932; Martin et al, 1953; Guggisberg et al, 1966; Bisset and Chaudhary, 1974). Chatterji and Basa (1967) reported vomicine as the major constituent alkaloid along with unidentified alkaloid in leaves and identified another alkaloid kajine (N-methyl pseudostrychnine) from the leaves of very young plants.

Root bark of S. nux-vomica yeilded 4-hydroxy-3-methoxy strychnine, 4 hydroxy strychine, nor-macusine, a new alkaloid 12 , 13 dihydro-12 -hydroxy isostrychnine named protostrychnine (Baser et al, 1979) methoxy strychnine, and mavacurine (Guggisberg et al, 1966). Leaves and root bark also yeilded 11 new alkaloids. 10-hydroxy strychnine, 3-12-dihydroxystrychnine, 12-hydroxy–11- methoxy strychnine, 3-12-dihydroxy- 11-methoxy strychnine,12-hydroxy strychnine-N- oxide 12-hydroxy-11-methoxy strychnine- N-oxide-19,20–dihydro isostrychnine, 16 , 17 dihydro-17 -hydroxy isostrychnine, O- methyl-macusine B, 16-epi-o-methyl–macusine B and normelinone B (Baser and Bisset, 1982).

De and Datta (1988) isolated 5 tertiary indole alkaloids viz. strychnine, brucine, vomicine, icajine and novacine from S.nux-vomica flowers. Bisset et al (1989) isolated and identified two phenolic glycosides salidroside and cuchiloside – a compound consisting of salidroside and an attached xylose unit, from the fruit of S.nux-vomica.

Rodriguez et al (1979) isolated an indole alkaloid from the seeds of S. nux- vomica and identified as a 3-methoxy icajine. A new alkaloid 15-hydroxy strychnine has been isolated from the seeds and the structure of the alkaloid established by spectroscopic data (Galeffi et al, 1979). Cai et al (1990a) isolated 4 new alkaloids isobrucine, isobrucine N-oxide, isostrychnine N-oxide and 2 hydroxy–3-methoxy strychnine from the heat treated seeds of S. nuxvomica and the structure of the alkaloids were determined by 13 CNMR (Cai et al, 1994). Cai et al (1990 b) studied the changes in the alkaloid composition of the seeds during drug processing. Saily et al (1994) determined the mineral elements in Strychnos nux-vomica. Corsaro et al (1995) reported polysaccharides from the seeds of Strychnos species.

Seeger and Neumann (1986) reviewed the physico-chemical characteristics, occurrence, identification, utilisation, poisoning, toxicity, kinetics, differential diagnosis and therapeutic uses of strychnine and brucine. Aspergillus niger, A. flavus and Pencillium citrinum showed regular association with Strychnos seeds and effectively deteriorated the alkaloid content of the seeds (Dutta, 1988; Dutta and Roy, 1992). Nicholson (1993) described the history, structure and synthesis of strychnine which occur in the seeds of S. nux-vomica. Rawal and Michoud (1991) developed a general solution for the synthesis of 2- azabicyclo (3.3.1) nonane substructure of Strychnos alkaloids.

Villar et al (1984) and Hayakawa et al (1984) developed HPLC method for the analysis of strychnine and brucine. Graf and Wittliner (1985), Kostennikova (1986) and Gaitonde and Joshi (1986) suggested different methods for the assay of strychnine and brucine. Biala et al, (1996) developed new method for the assay of alkaloids in S. nux- vomica.

The seeds are bitter, acrid, alexeteric, aphrodisiac, appetiser, antiperiodic, anthelmintic, digestive, febrifuge, emmenagogue, purgative, spinal, respiratory and cardiac stimulant and stomachic. The bark is bitter, and tonic and febrifuge (Nadkarni, 1954; Kurup et al, 1979; Warrier et al, 1996).

The quarternery alkaloid from the root bark of the Sri Lankan plant exhibited muscle-relaxant activity (Baser and Bisset, 1982). Antimicrobial activity of indole alkaloid isolated from the Strychnos nux-vomica was studied by Verpoorte et al, 1983. Shukla et al (1985) evaluated the efficacy of Rasnadigugglu compound consisting of S. nux-vomica, on rheumatoid arthritis and found to be effective in reducing inflammatory oedoma and rheumatoid arthritis. It also exhibited analgesic activity. A compound Unani formulation containing S. nux-vomica significantly attenuated withdrawal intensity in morphine dependent rats (Zatar et al, 1991). Shahana et al (1994) studied the effect of Unani drug combination (UDC) having Strychnos nux-vomica on the abstinence syndrome in moderately and severely morphine dependent rats. The UDC strikingly suppressed the abstinence syndrome was seen to possess central depressant and analgesic action.

Melone et al (1992) reported brucine-lethality in mice. Panda and Panda (1993) and Satyanarayanan et al (1994) reported antigastric ulcer activity of nux vomica in Shay rats. Banerjee and Pal (1994) reported the medicinal plants used by the tribals of plain land in India for hair and scalp preparation and S. nux-vomica being used to cure alopecia (baldness) by the tribals. Tripathi and Chaurasia (1996) studied the effect of S. nux-vomica alcohol extract on lipid peroxidation in rat liver.... strychnine tree



Recent Searches